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Abstract—Sensor-based Human Activity Recognition (HAR)
provides valuable knowledge to many areas. Recently, wearable
devices have gained space as a relevant source of data. However,
there are two issues: large number of heterogeneous sensors
available and the temporal nature of the sensor data. To handle
those issues, we propose a multimodal approach that processes
each sensor separately and, through an ensemble of Deep Con-
volution Neural Networks (DCNN), extracts information from
multiple temporal scales of the sensor data. In this ensemble,
we use a convolutional kernel with a different height for each
DCNN. Considering that the number of rows in the sensor data
reflects the data captured over time, each kernel height reflects a
temporal scale from which we can extract patterns. Consequently,
our approach is able to extract from simple movement patterns
such as a wrist twist when picking up a spoon to complex
movements such as the human gait. This multimodal and multi-
temporal approach outperforms previous state-of-the-art works
in seven important datasets using two different protocols. In
addition, we demonstrate that the use of our proposed set of
kernels improves sensor-based HAR in another multi-kernel
approach, the widely employed inception network.

Index Terms—Human Activity Recognition, Wearable sensors,
Multimodal data, CNN Ensemble, Multiscale Temporal Data

I. INTRODUCTION

The use of sensors from wearable devices to recognize
human activities has grown every year. As discussed by Lara et
al. [1], there are many reasons for this growth: the increasing
interest of several areas, such as, medical, military, and secu-
rity applications; the convenience and comfort of using such
devices (it does not change or hinders the action due to their
use); the feeling of privacy (as opposed to monitoring with
cameras where depending on the activity performed or the lo-
cation, the user feels uncomfortable); and it is already naturally
inserted into people’s lives, facilitating the data capture. The
number of sensors in such devices is increasing and the large
range of sensors provide rich and complementary information
regarding the activities performed by users. Therefore, an
important line of research that has gained attention focuses on
the investigation to combine (i.e., fuse) these multiple sensors
to improve human activity recognition.

Some works perform fusion in the raw data (i.e., early
fusion), concatenating the sensors into a common matrix
used as input for machine learning methods. For instance,
Chen and Xue [2] employed a Deep Convolutional Neural
Network (DCNN) with three convolutional layers and used
the size of the kernel to extract the relation between the
axes and temporal information. Motivated by the architecture

proposed in [2], Jordao et al. [3] suggested a DCNN able to
explore the patterns among the signal axes in all the layers
that compose the network. As a consequence, their proposed
DCNN achieved better results than [2]. Different from [2],
[3], Jordao et al. [4] employed a DCNN and use partial least
squares analysis to reduce the dimensionality of each max-
pooling layer and consider the concatenation of the dimension
reduction as a feature to feed a softmax classifier. To improve
the data representation, Jiang and Yin [5] applied a discrete
Fourier Transform to preprocess the input matrix and use a
DCNN composed by a stack of two convolutional layers, a
fully connected and a softmax layer to recognize the activities.
However, due to the multimodal nature of each sensor, merging
the sensors in the raw data may not be appropriate since
sensors have several dissimilarities between them, such as a
different number of axes, scales, meanings, or data nature (e.g.,
angle, value, degree, frequency).

To address the multimodality problem, some authors pro-
posed to insert a padding between the sensors to separate
the data and to be able to extract features from the sensors
separately. For instance, Ha et. al. [6] preprocessed the matrix
of sensors adding a zero-padding between each sensor and
use a DCNN with the same layer structure as in [5]. However,
this division is only effective at the first layer since, from
the second layer onwards, the data from different sensors
are convoluted together. In fact, in another work, Ha and
Choi [7] proposed to insert zero-padding before each convo-
lutional layer to avoid interference between sensors when 2D
convolutional kernel is applied. While this approach separates
in some way the data before performing fusion, it uses the
same DCNN to learn features from all sensors simultaneously,
which might overcharge the model since the kernel have to
learn patterns from different data nature.

In a recent work, Yao et al. [8] brought a new perspective on
merging multimodal data to perform sensor-based HAR. They
build an architecture with three different sequential blocks: an
individual deep convolutional subnet for each input sensor to
learn local patterns, a common deep convolutional subnet that
concatenates all sensors and learns the high-level relationship
among them and, at the end of the architecture, a stacked Gated
Recurrent Unit [9] structure to learn meaningful temporal
features. Since the use of convolutional and recurrent networks
are already well established in the sensor literature, the main
advance of [8] is to go beyond just placing a boundary between
the sensors in the input matrix. Instead, they separate the
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Fig. 1: Our Multimodal DCNN Ensemble (MDE) relies on two premises. The first is separately processing each sensor and the
second is to extract patterns from multiple temporal scales. Thus, for each sensor, we create a DCNN ensemble that extracts
multi-temporal information. This ensemble is composed of streams so that each one extracts patterns on a specific temporal
scale and classifies the sample. We merge all scores into a late fusion approach which allows us to take advantage of the
complementarity between both sensors and temporal scales.

sensors from the beginning to extract features individually and
learn which patterns separate human activities for each sensor
before merging and benefiting from their complementarity.

Besides the sensor data heterogeneity, another issue that
must be considered is the temporal nature of the data. Due
to the CNN input format for sensors (where columns refer
to the sensor axes and rows to data-capture over time), the
height of the convolutional kernel represents the size of the
temporal window used to learn patterns. Since there are several
possibilities to set the kernel height, we can see each size as
a temporal scale to extract potential patterns.

In traditional deep convolutional network methods [2], [3],
[5], a single kernel is set for each layer, which discards
all other possible temporal scales for that particular layer.
In these networks, each stacked convolutional layer learns
features at a larger semantic level than the previous one and,
in the sensor context, a deeper CNN network would learn
features in multiple temporal scales due to its depth (each
layer learns a higher temporal scale than the previous one).
However, the convolutional maps that go to the next layer are
the activations for the kernel in the previous layer. In this way,
when one chooses a single kernel size for a specific layer,
it might discard important information in this layer which
would only be selected by another kernel size. Therefore, to
avoid this problem, we propose the use of an ensemble of
multiple kernels which is able to learn several temporal scales
simultaneously. This follows the intuition that human activities
are composed by different durations, i.e., while some activities
can only be distinguished by small and fast movements, others
need to be analyzed for longer periods of time to be classified.

Therefore, we propose an approach based on multiple

streams to individually process the sensor data. Although, the
core of this approach is a novel way to extract temporal data
by employing an ensemble of temporal scales implemented
with multiple DCNNs. As each DCNN has a kernel size
which reflects one scale of a pre-defined temporal scale range,
we can extract patterns of multiple sizes, ranging from short
movements, such as a gentle twist of the wrist, to large
and complex motions, such as the human gait. According
to experimental results, our approach outperforms previous
state-of-the-art results in seven datasets using two different
evaluation protocols. In addition, we adapt the Inception
module [10] to compare to our DCNN Ensemble approach
(without multimodal premise) and we demonstrate that our
method is better than the Inception. In addition, we show that
using our kernel set is more suitable for the sensor-based HAR
than the kernels originally proposed in the Inception module.

II. PROPOSED APPROACH

As illustrated in Figure 1, in our Multimodal DCNN En-
semble (MDE) approach, we first separate the sensors into
different inputs to process each one individually. Then, for
each sensor, we construct an ensemble of temporal scales
extracted through DCNN streams that are subnets within our
network. Finally, we use an approach based on late fusion to
merge the multi-modal and multi-temporal information. This
process is detailed in the following paragraphs.
DCNNs Ensemble. The sensor data is commonly stored in a
matrix of size t×a, where a is the number of axes of the sensor
(for instance, 3 axes (x, y, z) on motion sensors) and t is the
temporal axis, where each row is a sensor capture over time.
Therefore, given a 2D kernel (h,w), our premise is that the
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Fig. 2: The deep convolution neural network stream.

height of the kernel (h) is responsible for determining in which
temporal scale we are learning the patterns. For instance, a h
equal to 25 in a sample captured at a frequency of 100Hz
learns patterns of 0.25 seconds while a h equal to 250 learns
patterns of 2.5 seconds. Thus, the larger the kernel height, the
larger the temporal pattern we capture.

To extract information from multiple temporal scales, we
employ an ensemble of DCNNs with different kernel sizes
each. As shown in Figure 1, an ensemble is built for each sen-
sor, so we have several ensembles in our network, according
to the number of sensors processed (i.e., in Figure 1, we have
three sensors and consequently, three ensembles of DCNNs).
The number of DCNNs in each ensemble is pre-defined as a
parameter of our architecture called pool. The pool is a set
of kernels K = {K1,K2, ...,Kj} which contains a variety of
kernel sizes ranging from a small kernel up to a large one.
For each kernel in our pool, we add a DCNN stream in the
ensemble and set its two convolutional layers with the specific
kernel. For instance, in Figure 1, we have a pool of j kernels
where three of them have their streams explicitly drawn in the
figure composing a kernel pool K = {5×2, 25×2, ..., 250×2}.
DCNN Stream. Each DCNN in the ensemble, for conve-
nience, let us call it a stream, is a network composed of two
parts, as shown in Figure 2. First, there is a convolutional
block with two convolutional layers, intercalated by two max-
pooling layers. The use of convolutional layers allows us
to learn temporal patterns in the scale we define for each
stream and the application of max-pooling controls overfitting,
reduces the number of parameters and the computation cost.
Second, at the end of the subnet, we have a fully connected
block consisting of a fully connected and a softmax layer.
We use scaled exponential linear units [11] as the activation
function of the fully connected block. While the convolutional
block provides a meaningful, low-dimensional, and somewhat
invariant feature space, the fully-connected block is learning a
non-linear function in that space, which translates the features
extracted by the convolutional block to the softmax scores.
Late Fusion. After the previous stage, we have an ensemble
for each sensor, and each ensemble outputs j probability vec-
tors. It is necessary to merge this information to take advantage
of the complementarity provided by both the multiple sensors
and the multiple temporal scales. We empirically found that
the best way to merge these streams is by using meta-learning
of the scores. Thus, we concatenate all the score vectors of

the streams (j × number of sensors) in a single feature vector
and pass it to the classification layer (softmax). The training
of our network is done in an end-to-end way, which optimizes
the weights of the entire network since it maps the input
of all the modalities to a single output. Consequently, the
network dynamically learns which scales and sensors are most
appropriate for each activity.

III. EXPERIMENTAL RESULTS

One of the most latent problems in wearable sensor-based
human activity recognition is the lack of standardization of
metrics, evaluation protocols, and datasets, which makes it
difficult a comparison among methods. While some works
record their own datasets to perform experiments, others use
datasets from the literature but do not clarify how to reproduce
the experiments. Recently, a work has endeavored to solve
this issue by bringing the first standardization to the domain.
Jordão et al. [12] performed a thorough study and standardized
seven datasets of the wearable sensor literature in different
protocols. In this section, we quickly describe the experimental
setup employed in this work using the framework proposed
by [12] and then, we discuss the results achieved by our
proposed approach and two simplifications of the approach.

A. Experimental Setup

Jordão et al. [12] conducted a survey in the litera-
ture and gathered seven important datasets: WHARF [13],
USCHAD [14], UTD-MHAD (set 1 and 2) [15], WISDM [16],
PAMAP2P [17] and MHEALTH [18]. This set of datasets
composes an interesting diversity of number of samples,
types of activities performed and number of available sensors,
making it possible to evaluate the robustness of the methods
in different scenarios. The datasets were processed and stan-
dardized with a sampling rate of 5 seconds, except for the
UTD-MHAD dataset that had to be sampled at 1-second rate.
We evaluate our approach in these seven datasets following
strictly the procedure defined by Jordão et al. [12]1.

Regarding protocols, according to [12], Leave-One-Subject-
Out (LOSO) and Leave-One-Trial-Out (LOTO) are the most
appropriate for reporting results in sensor-based HAR. In the
LOSO protocol, the data are separated in training and test so
that the test has only one subject at a time and the training
has the other subjects. In the LOTO, the trial consists of a
transition from one activity to another, so the data is separated
into trials where each trial contains only a continuous capture
of an activity. Therefore, the training is performed with all
the trials except one that is put to test. LOSO represents
the real scenario of applications for wearables devices, where
a method is trained in known subjects and applied to new
subjects later. This protocol also analyzes the generalization
quality of the method since the training and test data do not
have the same distribution. On the other hand, LOTO protocol
has the benefits of generating a large number of samples and
certifying that the contents of a trial do not appear in training

1Refer to [12] for more details regarding the evaluation procedure.
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and testing at the same time, different from the cross-validation
protocols inappropriately used in the literature, which ensures
a correct evaluation of the performance.

B. Results and Discussion

To evaluate separately the contribution of the DCNN ensem-
ble and the multimodal hypothesis (processing each sensor
separately), we implemented two simplified versions of our
MDE method. In the first, called DCNN Ensemble we do not
separate the sensors, instead, we concatenate all sensors into
a single array (in the same way of the majority of works)
that feeds one ensemble of kernels. In the second, called
Multimodal Stream, we use only the multimodal hypothesis,
using just one DCNN stream (see Figure 2) for each sensor
instead of an ensemble. In this DCNN stream, we set a kernel
of size 25 × 2 that empirically showed a good performance.
Due to the multimodal architecture, we evaluate the MDE and
Multimodal Stream only on datasets that contain more than
one sensor.

We compare our approach with all methods evaluated by
Jordão et al. [12]. Thereby, in addition to the methods men-
tioned in Section I, we also show results from three other
handcrafted methods [19]–[21] surveyed by [12]. Usually,
this family of methods extracts statistical features and applies
a classifier to recognize activities. We include them in our
evaluation mainly because they present better results in some
datasets than the proposed approaches based on deep learning.
Furthermore, we discuss more deeply the results of Yao et
al. [8] in contrast to ours, since to the best of our knowledge,
that is the only multimodal method using multiple streams
that have been proposed so far in the context of wearables
sensors. To analyze the contribution of the pool of kernels
and to evaluate our DCNN ensemble, we use the Inception
network module [10] as a baseline. Although the Inception
was originally designed for object detection in images, it is
analogous to our approach since it also applies multiple kernels
to the same input to extract different pattern sizes.
Comparison with Kernel Ensemble Baseline. We could not
compare our DCNN Ensemble with Inception’s full architec-
ture [10] because the available datasets do not have enough
data to train a network of the size of Inception (in the object
detection domain the Inception was trained using 1.2 million
of images provided by ImageNet dataset [22], in our context,
the dataset with the largest number of samples used in our
evaluation has 20k samples). One option would be to use
the pre-trained network on the ImageNet, by performing a
transfer learning, but the pre-trained model is restricted to
the use of three channels and to have a minimum array of
139 × 139 pixels. Besides to the sensory data being one
channel, our largest dataset has a matrix of 500×10, so it is not
possible to use the pre-trained Inception network. Therefore,
we did a study of the appropriate number of Inception modules
that should be used for the context of wearable sensors. The
experiments showed that the addition of more than one module
deteriorated the results, thus, all Inception-based experiments
in this work were done by using only one Inception module.

Another important point is that we add to the Inception
module the fully connected block used in our DCNN stream.
This considerably increased the Inception performance, since
the fully connected block is capable of fusing the different
patterns extracted by the different kernels sizes and also
regularize the network since we use SELU activation function.
We employed as baselines the two modules proposed by
Szegedy et al. [10]: the naı̈ve and the dimensionality reduction
module. In addition, to evaluate our kernel pool, we adapt each
type of Inception module to the wearable sensors domain by
using the same pool of kernels used by our approach instead
of the kernels proposed in [10]. Table I shows the results
obtained from these four approaches. It is possible to note
that using the kernels pool improves the result of the Inception
original modules for all datasets. This support our hypothesis
that extracting multiple temporal scales is appropriate for
the sensor domain. Besides, our DCNN Ensemble approach
outperforms all four Inception-based methods using LOSO
and LOTO on the seven datasets, which points out that our
ensemble is more suitable to employ the use of multiple
kernels to extract temporal information in the context of
wearables sensors.

Comparison with Multimodal Baseline. Yao et al. [8]
brought advances to sensor fusion with an approach based
on multiple streams to processes each sensor separately. Our
Multimodal Stream and MDE approaches follow this intuition.
Table I shows that the results achieved by [8] are modest
and in some cases smaller than very simple approaches like
handcrafted methods. We believe this is because the network
proposed by [8] has a very complex network which can cause
overfitting since the datasets do not have a large number
of samples. In addition, in the datasets of the UTD-MHAD
family, the sample size does not allow it to be divided into
time-steps to fed the network proposed in [8]. Thus, the
approach performs poorly in the two UTD-MHAD datasets.
Our work, on the other hand, showed superior results even
using only the multimodal hypothesis through our Multimodal
Stream approach (without DCNN Ensemble). Furthermore,
using the MDE, we solve the temporality issue in an apparently
more efficient way since it does not use recurrent networks and
still surpasses more sophisticated approaches such as [8].

Comparison with the State-of-the-art. In the Table I is
showed the results of our main approach, MDE, as well as two
simplifications of it, the DCNN Ensemble and the Multimodal
Stream (both explained at the beginning of this section).
Our approaches overcome the results of our two baselines
(Inception module [10] and Yao et al. [8]) and all methods
of the literature surveyed by Jordão et al. [12] achieving, to
the best of our knowledge, the state-of-the-art in the seven
datasets evaluated. Particularly, in the datasets MHEALTH and
PAMAP2P, the DCNN Ensemble approach showed superior
results to the MDE approach in both protocols tested. We
believe this is occurring because we had to reduce the number
of parameters in MDE network for these two datasets due
to the limited computational resources available to run our
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WHARF UTD-1 UTD-2 WISDM USCHAD MHEALTH PAMA WHARF UTD-1 UTD-2 WISDM USCHAD MHEALTH PAMA

METHODS LOTO (ACCURACY (%)) LOSO (ACCURACY (%))

Kwapisz et al. [19] 44.51 15.99 69.61 79.08 76.52 89.75 70.58 42.19 13.04 66.67 75.31 70.15 90.41 71.27
Catal et al. [20] 64.84 47.80 81.37 80.52 87.77 91.84 81.03 46.84 32.45 74.67 74.96 75.89 94.66 85.25
Kim et al. [21] 61.12 50.98 75.27 56.26 85.70 91.51 78.08 51.48 38.05 64.60 50.22 64.20 93.90 78.08
Chen and Xue [2] 72.55 - - 86.55 84.66 89.95 82.32 61.94 - - 83.89 75.58 88.67 83.06
Jiang and Yin [5] 70.79 - - 83.82 80.73 52.78 - 65.35 - - 79.97 74.88 51.46 -
Ha et al. [6] - - - - - 85.31 80.13 - - - - - 88.34 73.79
Ha and Choi [7] - - - - - 82.75 71.19 - - - - - 84.23 74.21
Yao et al. [8] - 12.70 22.41 - 81.34 31.35 70.59 - 11.45 22.40 - 71.52 31.88 72.61

Inception naı̈ve mod [10] 43.98 50.87 76.27 83.02 - - - 36.64 40.71 72.55 78.64 - - -
Inception naı̈ve + pool 49.86 53.06 76.71 84.89 - - - 41.14 41.44 72.46 81.99 - - -

Inception mod [10] 51.76 52.36 74.62 79.18 - - - 42.07 39.62 68.34 73.86 - - -
Inception + pool 60.74 56.66 78.62 86.83 - - - 49.97 42.23 72.96 80.99 - - -

DCNN Ensemble 75.50 62.03 81.63 89.01 88.49 93.09 83.99 69.79 46.75 79.38 86.22 82.66 96.27 87.59
Multimodal Stream - 48.90 79.82 - 85.95 83.17 79.62 - 36.99 74.59 - 79.68 90.20 80.58
MDE - 69.61 83.78 - 90.08 84.61 76.35 - 57.13 81.99 - 83.40 88.97 77.70

TABLE I: Comparison of our Multimodal DCNN Ensemble (MDE) and its simplifications (DCNN Ensemble and Multimodal
Stream) to the state-of-the-art architectures surveyed by [12] using LOTO and LOSO protocols on seven datasets. Also, we
show the results of two Inception modules [10] using the original proposed kernels and our proposed pool of kernels. Cells
with the symbol ”-” denote that it is not possible to execute the method on the respective dataset, due to its architecture.

experiments. Thus, we use a smaller pool of kernels and a fully
connected with fewer neurons in the stream’s fusion block in
these datasets. We reiterate that many efforts have been done
to achieve modest improvements in HAR based on wearable
sensor data, which reinforces that the MDE and the DCNN
Ensemble provide notable improvements.

IV. CONCLUSIONS

In this work, we proposed a multiscale ensemble-based
approach of deep convolutional neural networks to address
sensor-based human activity recognition (HAR). Our approach
is able to learn individually the features of each sensor before
performing the fusion and to model multiple temporal scales of
an activity sequence. We demonstrate its suitability for HAR
on wearable sensor data by performing an evaluation on seven
important datasets. Our approach outperforms previous state-
of-the-art results and an Inception module network adaptation
used as a baseline to our convolutional kernel ensemble
premise. We show that our approach works directly on the raw
sensor data, with no pre-processing, which makes it general
and minimizes engineering bias.

ACKNOWLEDGMENTS

The authors would like to thank the Coordination for
the Improvement of Higher Education Personnel – CAPES
(DeepEyes Project). Part of the results presented in this paper
were obtained through research on a project titled ”HAR-
HEALTH: Reconhecimento de Atividades Humanas associ-
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