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Abstract—We present a novel approach of graph represen-
tation based on mutual information of a random walk in a
graph. This representation, as any global metric of a graph,
can be used to identify the model generator of the observed
network. In this study, we use our graph representation combined
with Random Forest (RF) to discriminate between Erdös-Renyi
(ER), Stochastic Block Model (SBM) and Planted Clique (PC)
models. We also combine our graph representation with a
Squared Mahalanobis Distance (SMD)–based test to reject a
model given an observed network. We test the proposed method
with computer simulations.

Index Terms—Network Topology, Graph Theory, Complex
Networks, Mutual Information.

I. INTRODUCTION

Graph structures allow us to explore how different enti-
ties interact with each other; they give us another layer of
information to the usual vector of individual characteristics
of independent entities in the system. This new layer helps us
understand how connections emerge and disappear and/or how
different individual actors interact between each other given
their distinct attributes.

In this study we introduce a graph model representation
tool based on mutual information of a random walk on a
graph. This allows us to describe each graph structure with
a two dimensional vector that, as we show, can be used to
discriminate between models or reject a model. As observed
by [9], the decay in mutual information of a random walk in a
graph carries a signal regarding the structure of the network.
Our approach tries to exploit this finding in order to obtain
meaningful information regarding the structure of the observed
graph.

There are various approaches that use graph representations
to classify graphs. In [3], the authors propose a two-step
procedure and use global characteristics. In their first step,
they compute known graph features such as degree centrality,
betweeness centrality, closeness centrality and others, and in
the second step, they classify the graphs using Random Forests
(RF). As in [3], the method from [6] is also a two-step
procedure. The authors introduce Walk2Vec and Walk2Vec-
SC, which exploit random walks, sparse coding and pooling

The authors thank the support of the National Science Foundation under
Award CCF-1618999.

to generate graph features, which are then classified using RF.
In [10], the spectrum of a graph using different graph repre-
sentations is analyzed. The representations include Laplacian,
normalized Laplacian, signless Laplacian, adjacency matrix
and heat kernel. The graph spectra are classified by neural
networks. In [8], the authors combine the spectral density of a
graph and the Kullback-Leibler divergence in order to obtain
the best model within a certain family of network models.
They also use the Jensen-Shannon divergence to measure
distance between graphs structures and to test whether or not
two models have zero distance between them. Unlike [10],
in [8], the graph representation is the adjacency matrix only
and one computes the spectrum density from it. In [7], the
authors expose the structure of the graph by the use of a
combination of operations on the adjacency matrix, which is
transformed to attributes that are then classified using Support
Vector Machines (SVM). In [5], as in [3], the classification is
based on computed features of a graph. Specifically, graphlet
counts are exploited to characterize different structures. The
tests in the paper are mostly for sparse graphs generated from
a preferential attachment variant. In [1], the authors include 47
measures that combine local and global graph characteristics.
Again, these measures are applied to characterize different
graph structures.

Our contribution is to develop a new global graph represen-
tation measure which carries enough information to discrimi-
nate between models. Thus, it can be used as a classification
method. Further, our graph representation can be used to reject
a model when implemented with standard outlier detection
techniques.

The paper is organized as follows. In the next section we
provide the problem statement. In Section III, we describe the
proposed method, and in Section IV, we describe results of
the method. We conclude the paper with Section V.

II. PROBLEM STATEMENT

In many cases, in network science, available data are static,
that is, we do not know how an observed graph was formed.
In other words, we do not know the order of arrival of edges
nor nodes. Thus, we only have a graph at hand and would
like to know if a particular mechanism (model) has generated
the graph. So basically, here we deal with significance testing.
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At the end, we either reject the model or do not reject it.
Further, we may have several mechanisms as candidates for
generative models. In other words, we deal with a model
selection, where the task is to select the best model from the
considered set. If we identify the correct model, we will be
able to obtain samples of graphs that share the same structure,
i.e., we would be able to generate networks of the same size
and same characteristics as the one that was observed.

III. PROPOSED METHOD

Our method starts with sampling a graph with the tested
model. Once we sample from each model, we map each
graph, as described by its adjacency matrix, to a vector in
R2. This vector contains information regarding the structure of
the graph. Finally, depending on the task, this 2-dimensional
representation is used in a classification procedure to deter-
mine the best available model for the observed data, or it is
used to reject a specific model believed to be the generator of
the observed network. We show two applications that use our
graph representation, one for model selection and the other for
significance testing. Although our ideas could be extended to
directed and weighted networks, we are not going to explore
these cases here.

Given a graph adjacency matrix A of a graph of size
N×N , undirected and unweighted, we compute the transition
matrix T = D−1A where D is a diagonal matrix with
Dii =

∑N
j=1Aij . We use this transition matrix to define a

random walk on the nodes of the graph. The initial state of
the random walk is denoted x (0) ∈ {1, ..., N}. In our case, the
random walk starts at node i ∈ {1, ..., N} with probability 1

N .
After t steps, the random walk is in node x (t) ∈ {1, ..., N}.

We compute the mutual information between x (0), the
initial state, and x (t) as in [9], i.e.,

I (t) = I (x (0) , x (t)) =
N∑
i=1

pi

N∑
j=1

P t
ij log

(
P t
ij

ptj

)
, (1)

where pi = 1
N where i = 1, 2, . . . , N corresponds to the

distribution of the starting node of the random walk x (0),
ptj =

∑N
i=1 piP

t
ij is the unconditional probability of the

random walk to be at node j after t steps, and P t
ij = (T t)ij is

the conditional probability that given the random walk starts
in node x (0) = i, the process is in node x (t) = j after t
steps.

In [9], the authors use the curve {It (t)}t=1,...,t∗ , in par-
ticular, they rely on the derivative as a way to guide their
clustering algorithm because it contains information regarding
the structure of the graph. Our hypothesis is that this curve
could contain information about the graph model used to
generate the observed network and we want to exploit it by
fitting a parametric function with a small number of parameters
to describe it. In the end, these parameters end up being our
graph representation.

In [9], the authors stated that for a convergent Markov
process limt→∞ It = 0 and that as t → ∞, It decays mono-

tonically. Based on these results, we propose the following
simple parametric function for I(t):

f (t) = ae−bt (2)

For a specific graph, the parameters (a, b), we hypothesize,
carry information on the model generator of a graph. We
would like to be able to derive a theoretical relationship
between a specific random graph model and the corresponding
distribution of (a, b). Since we do not have this relationship,
we sample the parameters in question by drawing for each
graph model a sample of size S and compute I (t) for
t = 1, ..., t∗. Using the sample distribution of (a, b), we
perform significance testing or model selection.

A. Simple Example

To clarify the main idea, we generate a small Erdős-Rényi
(ER) random graph with parameter p = 0.4. The generated
graph is represented by the following adjacency matrix:

A =


0 1 1 1 1
1 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

 . (3)

From this matrix, we compute the transition matrix given by

T =


0 .25 .25 .25 .25
.25 0 .25 .25 .25
.5 .5 0 0 0
.5 .5 0 0 0
.5 .5 0 0 0

 . (4)

Once T is obtained, we can get It with t = 1, ..., t∗, which for
this example is presented in Fig. 1. The figure suggests that the
function from (2) is adequate for modeling the decay of mutual
information with time. Next, we fit the function in Fig.1
with the function from (2), i.e., we estimate the parameters
(a, b). The estimated parameters represent the structure of this
specific graph. These parameters would be one sample of the
distribution of (a, b) for the model ER with p = 0.4 and
N = 5.

IV. RESULTS

A. Comparing models to Erdős-Rényi

In this section we use three models: the ER, the Stochastic
Block model (SBM) and the Planted Clique (PC). The defini-
tion of these models is as follows:
• ER: P (Aij = 1) = p for all i ∈ {1, ..., N} and i < j,

where this last inequality comes from the fact that we are
considering just undirected graphs.

• SBM: in our case we use the two-community structure.
Define C1, C2 ⊂ {1, ..., N} as the nodes in the first and
second community. Let P (Aij = 1) = pin if i, j ∈ C1

or i, j ∈ C2 and P (Aij = 1) = pout if i and j belong to
different communities. Again, the probabilities describe
the case for i < j, so the graph is undirected.
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• PC: as described in [6], we first generate an ER graph,
then randomly select k nodes in the graph and connect
all those k nodes together.

In the experiment, for each model we generated S = 1, 000
graphs of N = 1, 000 nodes with the following specific
parameters:

• ER: p = 0.05,
• SBM: we define δ = pin − pout, p = pin+pout

2 = 0.05,
δ ∈ {0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09}, and

• PC: p = 0.05 and k ∈ {36, 42, 53, 58, 64}.
An important point is that the parameters were chosen so that
the densities of the graphs were similar to make the detection
of the structure of the graph more challenging.

For each model defined above we sampled S = 1, 000
graphs, that is, we generated 1, 000 adjacency matrices. We
then proceeded with computing the transition matrices based
on the adjacency matrices. Next, we computed the mutual
information between the initial state and the state at time
t = 1, ..., t∗ of a random walk in the graph using (1) with
t∗ = 30. With the curve obtained by computing I (t) with
t = 1, .., t∗ for each sample of each model, we estimated the
parameters (a, b) by fitting the function shown in (2). Thus, we
had a sample of 14, 000 (1, 000 for each of the 14 considered
models) (a, b) parameters obtained from the simulated graphs
that are shown in Fig. 2 for graphs with N = 1, 000 nodes.
In these figures, we observe that as δ decreases, it is harder
to distinguish between the SBM and the ER models; also, it
is harder to detect differences between the PC and the ER
models than between the ER and the SBM models.

Next, we used the sample of parameters (a, b), shown in
Fig. 2, obtained from the considered models (14 of them) with
N = 1, 000 nodes.

Now that we mapped each graph to a point in R2, we
divided the sample of 14, 000 parameters (a, b) in two sets, a
training set and a test set. We picked 500 samples at random
from each kind of graph model, and so we ended up with
7, 000 samples in the training set. The samples that were not
selected in the training set were assigned to the test set.

In our experiment, we wanted to test if our graph rep-
resentation tool wass meaningful to distinguish between the
ER model and another model, the SBM or PC, and we do
the comparison one at a time. First we compared the ER
model with the SBM model with δ = 0.02. In order to do
this, we took the 500 samples in the training set that came
from the ER set and the 500 samples that came from the
SBM set with δ = 0.02 and calibrated the RF model with
100 decision trees. Then we classified the 500 samples from
the ER model and the 500 samples from the SBM model
with δ = 0.02 coming from the test set and we used as
a performance measure the Area Under the Curve (AUC)
of the Receiving Operating Characteristics (ROC) curve. We
compared the proposed method (PM), against those presented
in [6], which we call Benchmark method (BM).

Table I shows the comparison between the ER model and
each of the SBM models, using as measure the AUC. Table II

shows the results for the comparison between the ER model
and each of the PC models. The comparison with the BM are
favorable in both cases.

Fig. 1. Mutual information curve It.

Fig. 2. Fitted parameter to It for N = 1000.

TABLE I
ER AND SBM MODEL

Model AUC
δ PM BM

0.02 72.35% 95%
0.03 99.33% 100%
0.04 100% 100%
0.05 100% 100%
0.06 100% 100%
0.07 100% 100%
0.08 100% 100%
0.09 100% 100%
aPM: Proposed method.bBM: Benchmark method.

B. Significance testing
In addition to the models used in the last section, we use

the Barabási-Albert model (BA) described in [2]. This model
is characterized by the number of links m added in each step
of the algorithm. Every new link is connected to the existing
nodes with probability proportional to the degree of the node.
We take m ∈ {2, 4, 20, 50, 200} in the simulations.
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TABLE II
ER AND PC

Model AUC
k PM BM
36 99.99% 84%
42 99.98% 97%
53 100% 100%
58 99.99% 100%
64 100% 100%
aPM: Proposed method. bBM: Benchmark method.

In this section we assume that we have two inputs. The
first input is a graph model that we call the test model and
the second is an observed network. The idea now is to test
if we should reject the model of the observed network. We
simulated S = 1, 000 samples from the model we wanted to
test. From the graph samples, we obtained the corresponding
parameters (agmi , bgmi )i=1,...,S . From the observed network,
we computed

(
aobs, bobs

)
. The next step was to perform a

test that assessed if we should reject the hypothesis that the
observed network belongs to the proposed model. To that end,
we used the squared Mahalanobis distance (SMD) which has
been use as an outlier detection tool as in [4]. This distance
measure is defined as:

SMD = (x− µ)
′
Σ̂−1 (x− µ) . (5)

In our case, µ ∈ R2 and Σ̂ ∈ R2×2 are the mean and
sample covariance matrix of the sample (agmi , bgmi )i=1,...,S

and x corresponds to
(
aobs, bobs

)
. We assume that the sample

of parameters from the model are distributed according to
a normal distribution. Given this assumption, the SMD is
distributed according to χ̃2

2.
As before we set t∗ = 30 and we kept the parameters of

the models presented in the above section. To the previous
samples of graphs, we added the BA model parameters.
For each available model, we took the 1000 samples of the
parameters (a, b) and computed µ and Σ̂. After computing
these parameters, we selected another model and for each
available observation x = (a, b), we evaluated SMD obtaining
SMDx according to (5). Then we checked if

P (SMD > SMDx)) < γ, (6)

where we set γ = 0.01. If the statement was correct, we
rejected that the observation belonged to the test model, the
one we used to compute µ and Σ̂. We show the results in
Table III, where in the first column we present the model that
was used to estimate µ and Σ̂ in (5), in the second column
we show the model for which we take observations to use
as x in (5). Since we have S = 1, 000 observations for the
model of the observed network in column 3 of Table III, we
present the percentage of observations that were rejected as
belonging to the test model. Because of space limitations, we
only show the comparison between different models where
the % of correctly rejected is less than 100%. The different
SBM models are described as SBM δ, that is, SMB 0.02 is the

SBM model with parameter δ = 0.02. In a similar way, PC
36 corresponds to the PC model with k = 36. The BA models
are not shown in Table III because they can be completely
separated from the rest of the models and between them. The

TABLE III
SIGNIFICANCE TESTING:γ = 0.01

Test model Observed network % correctly rejected
ER SBM 0.02 8.70%
ER SBM 0.03 99.99%

SBM 0.02 ER 5.90%
SBM 0.02 SBM 0.03 99.10%
SBM 0.03 SBM 0.02 99.10%
SBM 0.03 PC 36 99.50%
SBM 0.04 PC 42 99.00%

PC 36 SBM 0.03 99.90%
PC 36 PC 42 99.60%
PC 42 SBM 0.04 98.90%
PC 42 PC 36 84.20%
PC 53 PC 58 65.70%
PC 53 PC 64 99.80%
PC 58 PC 53 55.00%
PC 58 PC 64 81.00%
PC 64 PC 58 69.20%

only pair of models that it is hard to reject is the ER-SBM 0.02.
When the test model was the ER and the observed networks
came from the SBM 0.02, we rejected it in only 8.70% of the
cases. Likewise, when the test model was the SBM 0.02 and
the observed network came from the ER model, we rejected
it 5.90% of the time.

In Table IV, in the second column we show the percentage
of observations incorrectly rejected from the indicated model.
For example, 1.50% of the observations were rejected as
coming from ER while in fact that was the generating model.
Since we were using γ = 0.01, the values presented in the
table should be close to 1%.

TABLE IV
SIGNIFICANCE TESTING:γ = 0.01

Model % rejected
ER 1.50%

SBM 0.02 1.00%
SBM 0.03 0.90%
SBM 0.04 0.90%
SBM 0.05 1.00%
SBM 0.06 0.80%
SBM 0.07 0.60%
SBM 0.08 1.20%
SBM 0.09 0.80%

PC 36 1.10%
PC 42 1.10%
PC 53 1.30%
PC 58 1.30%
PC 64 1.10%
BA 2 1.00%
BA 4 1.10%

BA 20 1.10%
BA 50 1.50%

BA 200 1.00%
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V. CONCLUSIONS

The Markovian relaxation concept used in [9], to analyze
graph structure in a clustering task, motivated us to try the
graph representation shown in this paper. In summary, our
graph representation corresponds to “mapping” the adjacency
matrix of a graph to a vector (a, b) ∈ R2. We conjectured
that the samples of (a, b) can be used for model selection and
rejection because there is a distribution of values in R2 that
is useful in identifying graph models. Extensive experiments
have demonstrated that, indeed, the parameters (a, b) can be
used for model selection and significance testing. At this point,
even though the empirical evidence is compelling, we lack a
formal theoretical proof to justify our results.
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