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Abstract—Dictionary leaning (DL) and dimensionality reduc-
tion (DR) are powerful tools to analyze high-dimensional noisy
signals. This paper presents a proposal of a novel Rieman-
nian joint dimensionality reduction and dictionary learning (R-
JDRDL) on symmetric positive definite (SPD) manifolds for
classification tasks. The joint learning considers the interaction
between dimensionality reduction and dictionary learning proce-
dures by connecting them into a unified framework. We exploit
a Riemannian optimization framework for solving DL and DR
problems jointly. Finally, we demonstrate that the proposed R-
JDRDL outperforms existing state-of-the-arts algorithms when
used for image classification tasks.

Index Terms—dictionary leaning, dimensionality reduction,
SPD matrix, Riemannian manifold

I. INTRODUCTION

Dictionary leaning (DL) combined with sparse representa-
tion (SR) has become popular for many computer vision tasks.
Many DL algorithms, e.g., K-SVD [1], were applied originally
for unsupervised learning tasks. Recently, some supervised
DL algorithms have been proposed for classification tasks
which exploit class label information in the training samples.
They include D-KSVD [2] and LC-KSVD [3], to name a few.
However, DL for high-dimensional data is computationally
expensive. To circumvent this issue, dimensionality reduction
(DR) techniques are used which reduce the computational cost
and highlight the low-dimensional discriminative feature of the
data.

In general, DR is applied first to the data samples, and then
the dimensionality-reduced data are used for DL. The sep-
arately pre-learned DR projection matrix, however, does not
fully promote the latent structure of data or preserve the best
feature for DL [4]. To address this issue, Feng et al. [5] have
proposed integration of DL and DR for improvement of the
discriminative classification performance, in which a specific
constraint similar to the Fisher linear discriminative analysis
is imposed on the coefficient matrix. Similarly, Yang et al. [6]
propose learning of the projection matrix and class-specific
dictionary jointly. Li et al. [7] report an integrated learning
method of the non-negative projection matrix. Foroughi et al.

[8] discuss specific constraints on the coefficient matrix and
on the projection matrix.

In many computer vision tasks, data of interest often reside
on a manifold, which is a generalization of the Euclidean
space. A particular manifold of interest is the manifold of sym-
metric positive definite (SPD) matrices that has been widely
used in many applications. For example, region covariance
matrices (RCM), which are symmetric positive definite, give
good performance in texture classification and face recognition
tasks [9], [10]. The diagonal elements of a RCM represent the
variances of coponent features, and the off-diagonal elements
indicate the respective correlations among them. Therefore, the
RCM can represent multiple features in a natural way. It should
be noted that the SPD matrices form a Riemannian manifold,
which allows to understand the geometry of the space [11].
Cherian and Sra [12] exploit the manifold structure to propose
a Riemannian DL and sparse coding (SC) algorithm. Sepa-
rately, the Riemannian DR techniques have been proposed in
several works [13]–[16].

In this paper, our main contribution is to learn DL and DR
jointly in the Riemannian framework. We propose R-JDRDL,
an algorithm for jointly learning the projection matrix for DR
and the discriminative dictionary on the SPD matrices for
classification tasks. The joint learning considers the interaction
between DR and DL procedures by connecting them into a
unified framework. The model is formulated as an objective
function over a sparse coefficient matrix and a Cartesian
product manifold that consists of the Stiefel manifold and mul-
tiple SPD manifolds. Optimization on the Cartesian product
manifold is cast as an optimization problem on Riemannian
manifolds [17]. Optimization on the sparse coefficient matrix,
on the other hand, is a convex program.

This paper is organized as follows. Section II briefly intro-
duces the SPD manifold and the Riemannian DL. Section III
details the proposed R-JDRDL algorithm. Our initial results
on the MNIST image classification task in Section IV show
that R-JDRDL outperforms state-of-the-art algorithms in the
domain.
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II. SPD MANIFOLD AND RIEMANNIAN DL

This section briefly explains the geometry of SPD manifold
and then introduces the Riemannian DL. Hereinafter, we
denote the scalars with lower-case letters (a, b, . . .), vectors
with bold lower-case letters (a, b, . . .), and matrices with bold-
face capitals (A,B, . . .). We denote a multidimensional or
multi-order array as a tensor, which is denoted by (A,B, . . .).

A. Geometry of SPD manifold [11]

A manifold M of dimensional d is a topological space that
locally resembles the Euclidean space Rd in a neighborhood
of each point X ∈ M. All the tangent vectors at X form a
vector space called the tangent space of M at X and denoted
as TXM. When endowed with a smoothly defined metric, i.e.,
inner product ⟨·, ·⟩X between vectors in the tangent space at
X ∈ M, the manifold M is called a Riemannian manifold.
The space of d × d SPD matrices, denoted as Sd

++, is a
Riemannian manifold, called SPD manifold, when endowed
with an appropriate Riemannian metric. The tangent space
at any point on Sd

++ is identifiable with the set symmetric
matrices Sd.

One particular choice of the Riemannian metric on the SPD
manifold is the affine-invariant Riemannian metric (AIRM)
[11], [18]. If P is an element on Sd

++, the AIRM is defined
as

⟨V,W⟩P := ⟨P−1/2VP−1/2,P−1/2WP−1/2⟩,

where V,W ∈ TPSd
++. The choice of metric does not

change with affine action by GL(d), which means that
[X → MXMT ,X ∈ Sd

++,
∀ M ∈ GL(d)] on V,W and

P. The Riemannian metric provides a way to compute the
distance between two points on the manifold. Because the
SPD manifold with the AIRM metric has a unique shortest
path, which is called geodesic, between every two points [11,
Section 6], the geodesic distance d : Sn

++ × Sn
++ → [0,∞] is

given as

d2(A,B) := Log∥A−1/2BA−1/2∥2F ,

where A,B ∈ Sn
++, ∥ · ∥F denotes the Frobenius norm, and

Log denotes the matrix logarithm.

B. Riemannian DL (R-DL)

Let X = {X1, . . . ,XN} ∈ Rd×d×N be the input training
sample set, where Xn denotes n-th sample that forms a SPD
matrix Xn ∈ Sd

++. The dictionary to be learned is denoted
as D = {D1, . . . ,DH} ∈

∏H Sd
++, where Dh ∈ Sd

++

is an atom of the dictionary. It should be noted that X
and D are third-order tensors. We also denote a sparse
coefficient vector as an ∈ RH

+ , which forms a coefficient
matrix A = [a1, . . . ,aN ] ∈ RH×N

+ , to represent a query
SPD matrix Xn using the dictionary D. It should also be
emphasized that an is required to be non-negative to ensure
that the resultant combination with the dictionary is positive
definite. Therefore, we specifically represent a sparse conic

combination of the dictionary and the coefficient vector as
D ⊗ an :=

∑H
h=1 an,hDh for an,h∗ ∈ RH

+ . Finally, the
problem formulation is defined as

min
D∈

∏H Sd
++,A∈RH×N

+

1

2

N∑
n=1

d2(Xn,D⊗an)+Ra(an)+RD(D),

where Ra(an) and RD(D) respectively represent the regu-
larizers on the coefficient vector and the dictionary [12]. To
optimize this non-convex problem, an alternative minimization
algorithm is used for the DL and the SC sub-problems.

III. R-JDRDL ON SPD MANIFOLDS

A. Problem formulation of R-JDRDL

Let X be the set of N SPD matrices of size m×m accompa-
nied with K class labels, i.e., X = {X1, . . . ,Xk, . . . ,XK} ∈
Rm×m×N , where Xk denotes the k-th class training sam-
ples. Xk is further composed of individual samples as
Xk = {Xk,1, . . . ,Xk,n, . . . ,Xk,Nk

}, where Xk,n ∈ Sm
++

and Nk is the number of samples of the k-th class in
the training set, i.e.,

∑K
k=1 Nk = N . Both X and Xk

are third-order tensors. The dictionary is denoted as D =
{D1, . . . ,Dk, . . . ,DK}, where Dk is the class-specific sub-
dictionary associated with the k-th class. Dk is also com-
posed as Dk = {Dk,1, . . . ,Dk,h, . . . ,Dk,Hk

}, where Hk is
the number of atoms of the k-th class sub-dictionary, and∑K

k=1 Hk = H .
As described earlier, the proposed R-JDRDL algorithm

learns not only the dictionary D, but also the projection matrix
U ∈ Rm×d(d < m), which projects m-dimensional data onto
d-dimensional data space. More specifically, Xk,n ∈ Sm

++

is mapped into UT Xk,nU ∈ Sd
++. Here, we need only full-

rankness of U to guarantee that UT Xk,nU is a SPD matrix.
Equivalently, we could enforce a unitary constraint on U, i.e.,
UT U = I. The space of unitary matrices is called the Stiefel
manifold St(d,m) := {U ∈ Rm×d : UT U = I}.

Considering that model parameters are (U,D) ∈ N and
A ∈ RH×N

+ , where N denotes the space of the product
manifold {St(d,m) ×

∏H Sd
++}, our proposed formulation

is

{Û, D̂, Â} = argmin
(U,D)∈N ,A∈RH×N

+

Jd(U,D,A)

+λaJa(A) + λuJu(U)

+λ1Rs(A) + λ2Rr(A) + λdRd(D), (1)

where Jd(U,D,A) is the discriminative reconstruction error
and where Ja(A) and Ju(U) represent the graph-based con-
straints on the coefficient and the projection matrices, respec-
tively. Rs(A) = 1T

H |A|1N (:=
∑K

k=1

∑Nk

n=1 ∥ak,n∥1), which
imposes sparsity on A. Rr(A) = ∥A∥2F . λs are non-negative
regularization parameters. Jd, Ju, and Ja are described below.

Discriminative reconstruction error term Jd: The dictio-
nary D is expected to approximate the dimensionality-reduced
samples from all classes, of which error is represented as
d2(UT Xk,nU,D⊗ak,n), where d is the Riemannian geodesic
distance on the SPD manifold. In addition, to impose a more
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discriminative power on D, the k-th sub-dictionary Dk is
expected to approximate the dimensionality-reduced training
samples associated with the k-th class. Here, let ak

k,n be
the sub-vector that corresponds to the k-th sub-dictionary as
ak,n = [a1

k,n; . . . ;a
k
k,n; . . . ;a

K
k,n], where ak

k,n ∈ RHk . The
error is equivalent to d2(UT Xk,nU,Dk ⊗ ak

k,n). It should be
small. The sub-vector aj

k,n(j ̸= k) corresponding to other
classes should be nearly zero, such that ∥Dj⊗aj

k,n∥2F is small.
Consequently, we obtain the cost function for Jd as

Jd(U,D,A)

:=
1

2

K∑
k=1

Nk∑
n=1

(d2(UT Xk,nU,D ⊗ ak,n)

+ d2(UT Xk,nU,Dk ⊗ ak
k,n))

+ λd

K∑
j=1,j ̸=k

Nk∑
n=1

∥Dj⊗aj
k,n∥

2
2,

λd > 0 is the regularization parameter.
Graph-based coefficient term Ja: We enforce A to be

more discriminative, and therefore, we seek to constrain the
intra-class coefficients to be mutually similar and the inter-
class ones to be highly dissimilar. To this end, we first
construct an geometry-aware intrinsic graph of intra-class and
a penalty graph for inter-class discrimination for two points
Xp,Xq ∈ Sm

++ as

Gw
bin(p, q) =

{
1 if Xp ∈ Nw(Xq) or Xp ∈ Nw(Xq)
0 otherwise,

Gb
bin(p, q) =

{
1 if Xp ∈ Nb(Xq) or Xp ∈ Nb(Xq)
0 otherwise,

where Nw(X) is the set of vw nearest intra-class neighbors
of X in terms of geodesic distance. Similarly, Nb(X) is the
set of vb nearest inter-class neighbors of X. Considering the
distance of pairs of coding coefficient vectors ap and aq as
an indicator of discrimination capability, the final graph-based
coefficient term Ja(A) is defined as

Ja(A) :=

N∑
p=1

N∑
q=1

1

2
∥ap − aq∥22 Gbin(p, q),

where Gbin(p, q) = Gw
bin(p, q) − Gb

bin(p, q) [13]. This term
enforces minimization of the difference of the two coding
coefficients if they are the same class, although the difference
of the code is maximized if they are from different classes.

Graph-based projection term Ju: We also learn a projec-
tion matrix U ∈ St(d,m) that can preserve class information
and which can map the training samples to a low-dimensional
discriminative space. Consequently, Ju(U) is defined as

Ju(U) :=

N∑
p=1

N∑
q=1

1

2
d2(UT XpU,UT XqU) Grd(p, q),

where the affinity matrix Grd allows to assign different
weights to the Riemannian distance between different points,
e.g., the distance d(Xp,Xq) is assigned the weight Grd(p, q).

B. Optimization of R-JDRDL

The objective function of (1) is divided into two sub-
problems, which are solved in alternating fashion. We discuss
both the sub-problems below.

DL sub-problem on the product manifold: We consider
the DL sub-problem of (1) by optimizing the projection matrix
U and the tensor-formed dictionary D, keeping A fixed to Â =
(âk,n). Consequently, the problem is can be re-formulated as

min
(U,D)∈N

f(U,D) := Jd(U,D, Â) + λuJu(U) + λdRd(D)

=
1

2

K∑
k=1

Nk∑
n=1

(d2(UT Xk,nU,D ⊗ âk,n)

+ d2(UT Xk,nU,Dk⊗âk
k,n))

+ λda

K∑
j=1,j ̸=k

Nk∑
n=1

∥Dj⊗âj
k,n∥

2
2

+ λu

N∑
p=1

N∑
q=1

1

2
d2(UT XpU,UT XqU)Gdr(p, q)

+ λdRd(D).

We exploit the Riemannian optimization framework on
the Cartesian product manifold N (consisting of the Stiefel
manifold and multiple SPD manifolds). In particular, we use
the Riemannian conjugate gradient (RCG) method for solving
the DL sub-problem. Theoretical convergence of the Rieman-
nian algorithms is to a stationary point. The convergence
analysis follows from [19], [20]. To this end, we require
the expression for the Riemannian gradient. According to
[12], the Riemannian gradient is obtained as gradf(U,D) =
Dk,hegradf(U,D)Dk,h with respect to Dk,h from the defini-
tion of AIRM where egradf(U,D) is the Euclidean gradient
of f(U,D) with respect to Dk,h.

SC sub-problem: We consider the SC sub-problem of (1)
for solving A, keeping U and D fixed to Û and D̂, respectively.
The problem, therefore, can be re-formulated as

min
A∈RH×N

+

Ψ(A) :=

Jd(Û, D̂,A) + λaJa(A) + λ1Rs(A) + λ2Rr(A)

=
1

2

K∑
k=1

(

Nk∑
n=1

d2(Û
T

Xk,nÛ, D̂ ⊗ ak,n)

+ d2(Û
T

Xk,nÛ, D̂k⊗ak
k,n))

+ λd

K∑
j=1,j ̸=k

Nk∑
n=1

∥D̂j ⊗ aj
k,n∥

2
2

+
N∑

p=1

N∑
q=1

1

2
∥ap − aq∥22 Gbin(p, q)

+ λ1Rs(A)+λ2Rr(A),

where ak,n is denoted as ap for simplicity. Here, we calculate
each column of A, i.e., ak,n sequentially by fixing the other
coefficients.
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It should be emphasized that the above problem is a convex
problem and is solved with a gradient projection algorithm.
Specifically, we use the spectral projected gradient (SPG)
solver [12], [21].

Classification scheme: We apply the learned projection
matrix U and the dictionary D on the query test sample
Xtest to estimate its class label. For this purpose, the test
sample is first projected into the low-dimensional space by
U. Subsequently, it is coded over D by solving the following
equation:

â = arg mina∈Rn
+

1

2
d2(UT XtestUD ⊗ a) + λ1∥a∥1,

where â = [â1, . . . , âk, . . . , âK ]T . âk is the sub-vector
corresponding to the sub-directory Dk. The residual for the
k-th class is calculated as

ek = d2(UT XtestUDk ⊗ âk) + σ∥â−mk∥22,

where σ is a weight to balance these two terms. mk is the
mean vector of the learned coding coefficient matrix of the k-th
class, i.e., Ak. We adopt the distance between â and the mean
vector of the learned coding coefficient of the corresponding
k-th class because it gives better classification results as shown
in [22]. Finally, the identity of the testing sample is determined
by selecting the class label with the minimum ek.

IV. NUMERICAL EXPERIMENTS

In this section, we show the effectiveness of the proposed
R-JDRDL algorithm against state-of-the-art classification al-
gorithms on SPD matrices.

The comparison methods are the following: NN-AIRM is
the AIRM-based nearest neighbor (NN) classifier; NN-Stein
is the Stein metric-based NN classifier. The Stein metric
dS : Sn

++ × Sn
++ → [0,∞] is a symmetric type of Bregman

divergence and is defined as d2S(A,B) := ln det((A+B)/2)+
0.5 ln det(AB), where A and B ∈ Sd

++ [23]. DR-NN-AIRM
is the AIRM-based NN classifier with the dimensionality-
reduced training samples, which are obtained by R-DR [13].
DR-NN-AIRM is the same algorithm, but the distance metric
is the Stein metric. R-SRC-AIRM and R-SRC-Stein are the
sparse representation classifiers (SRCs) based on the AIRM
and Stein metrics, respectively. R-KSRC stands for kernel-
based SRC with the Stein metric. R-DL is the DL with the
SRC classifier [12]. R-DR-DL-AIRM and R-DR-DL-Stein are
the DL with the SRC classifier after the R-DR algorithm.

We implement our proposed algorithm in Matlab. The
DL sub-problem on the product manifold makes use of the
Matlab toolbox Manopt [24]. The Matlab codes R-DL, R-
DR, and R-KSRC are downloaded from the respective authors’
homepages.

We use the MNIST dataset1, which are handwritten digits of
0–9. It has 60,000 images for training and 10,000 images for
testing. For this dataset, we generate 8× 8 RCMs [9], which
is computed at (x, y) from the feature vector

fx,y = [x, y, I(x, y), |Ix|, |Iy|, |Ixx|, |Iyy|, θ(x, y)],
1http://yann.lecun.com/exdb/mnist/.

TABLE I: Accuracy results

Algorithm Accuracy (Average ± Standard deviation)
Dictionary size (H) 5 10

NN-AIRM 0.464± 0.0433 0.551± 0.0400
NN-Stein 0.469± 0.0418 0.552± 0.0426
DR-NN-AIRM 0.598± 0.0643 0.619± 0.0547
DR-NN-Stein 0.591± 0.0713 0.618± 0.0531
RSRC-AIRM 0.543± 0.0464 0.610± 0.0267
RSRC-Stein 0.546± 0.0460 0.612± 0.0290
R-KSRC 0.583± 0.0392 0.646± 0.0331
R-DL 0.506± 0.0310 0.598± 0.0336
R-DR-DL-AIRM 0.434± 0.0455 0.445± 0.0687
R-DR-DL-Stein 0.435± 0.0481 0.435± 0.0610
R-JDRDL (Proposed) 0.617± 0.0280 0.673± 0.0514

where I(x, y) is the pixel value at (x, y), Ix := ∂I(x,y)
∂x , Ixx :=

∂2I(x,y)
∂x2 , and θ(x, y) := arctan

(
|Iy|
|Ix|

)
. Then, three RCMs,

one from the entire image, one from the left half and one from
the right, are concatenated diagonally, which produce RCM
of 24 × 24 size for each image. We execute 10 runs under
randomly selected 10 test samples (N) with 5 and 10 training
samples. The dictionary size H is equal to that of the training
sample. Therefore, the case of H = 5 represents an extreme
situation. We set the parameters of the proposed algorithm,
based on cross-validation, to λ1 = 0.0001, λ1 = 0.001, and
λa = 0.0001. λu are 0.01 and 0.001 in H = 5 and H = 10,
respectively. We also set vw = vb = H − 1. The original and
reduced dimensions are m = 24 and d = 16, respectively. We
initialize U from the DR method [13] using single sample per
class.

The results of the classification accuracy are presented in Ta-
ble I. The table presents superior performances of the proposed
R-JDRDL against state-of-the-art algorithms. It should be
noted that R-DR-DL (both with Stein and AIRM metrics) give
poor performance, implying that the separately pre-learned DR
projection matrix might not be optimal for the subsequent DL.

V. CONCLUSIONS

We have presented a Riemannian joint framework, R-
JDRDL, of performing dimensionality reduction along with
discriminative dictionary learning on the set of SPD matrices
for classification tasks. We formulate the joint learning as
an objective function with the reconstruction error term and
with the constraints on the projection matrix, the dictionary,
and the sparse coefficient codes. Our numerical experiments
demonstrate the good performance of jointly performing DL
and DR. In particular, R-JDRDL outperforms existing state-of-
the-arts algorithms for the MNIST image classification task.

Extending the framework to learning with other metrics
on the SPD manifold (e.g., the Stein metric or the log-
Euclidean metric) will be a topic of future research, as well as
having a competitive numerical implementation with extensive
evaluations on other real-world datasets.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2027



ACKNOWLEDGEMENTS

H. Kasai was partially supported by JSPS KAKENHI Grant
Numbers JP16K00031 and JP17H01732.

REFERENCES

[1] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Sig. Proc., vol. 54, no. 11, pp. 4311–4322, 2006.

[2] Q. Zhang and B. Li, “Discriminative k-svd for dictionary learning in
face recognition,” in CVPR, 2010.

[3] Z. Jiang, Z. Lin, and L. Davis, “Learning a discriminative dictionary for
sparse coding via label consistent K-SVD,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 11, pp. 2651–2664, 2013.

[4] H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa,
“Sparse embedding: A framework for sparsity promoting dimensionality
reduction,” in ECCV, 2012, pp. 414–427.

[5] Z. Feng, L. Yang, M. Zhang, Y. Liu, and D. Zhang, “Joint discriminative
dimensionality reduction and dictionary learning for face recognition,”
Pattern Recognition, vol. 46, no. 8, pp. 2134–2143, 2013.

[6] B. Q. Yang, C.-C. Gu, K.-J. Wu, T. Zhang, and X.-P. Guan, “Si-
multaneous dimensionality reduction and dictionary learning for sparse
representation based classification,” Multimedia Tools and Applications,
vol. 76, no. 6, pp. pp 8969–8990, 2016.

[7] W. Liu, Z. Yu, Y. Wen, R. Lin, and M. Yang, “Jointly learning non-
negative projection and dictionary with discriminative graph constraints
for classification,” in BMVC, 2016.

[8] H. Foroughi, N. Ray, and H. Zhang, “Object classification with joint
projection and low-rank dictionary learning,” IEEE Trans. on Image
Process., vol. 27, no. 2, pp. 806–821, 2018.

[9] Y. Pang, Y. Yuan, and X. Li, “Gabor-based region covariance matrices
for face recognition,” IEEE Trans. Circuits Syst. Video Technol., vol. 18,
no. 7, pp. 989–993, 2008.

[10] O. Tuzel, F. Porikli, and P. Meer, “Region covariance: a fast descriptor
for detection and classification,” in ECCV, 2006.

[11] R. Bhatia, Positive definite matrices, ser. Princeton series in applied
mathematics. Princeton University Press, 2007.

[12] A. Cherian and S. Sra, “Riemannian dictionary learning and sparse
coding for positive definite matrices,” IEEE Trans. Neural Netw. Learn.
Syst., 2016.

[13] M. Harandi, M. Salzmann, and H. Richard, “Dimensionality reduction
on spd manifolds: The emergence of geometry-aware methods,” IEEE
Trans. Pattern Anal. Mach. Intell., 2017.

[14] Z. Huang and L. V. Gool, “A riemannian network for spd matrix
learning,” in AAAI, 2017.

[15] Z. Huang, R. Wang, S. Shan, X. Li, and X. Chen, “Log-euclidean metric
learning on symmetric positive definite manifold with application to
image set classification,” in ICML, 2015.

[16] Z. Huang, R. Wang, X. Li, W. Liu, S. Shan, L. V. Gool, and X. Chen,
“Geometry-aware similarity learning on spd manifolds for visual recog-
nition,” IEEE Trans. Circuits Syst. Video Technol., 2017.

[17] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on
Matrix Manifolds. Princeton University Press, 2008.

[18] X. Pennec, P. Fillard, and N. Ayache, “A riemannian framework for
tensor computing,” Int. Jornal of Computer Vision, vol. 66, no. 1, pp.
41–66, 2006.

[19] H. Sato and T. Iwai, “A new, globally convergent Riemannian conjugate
gradient method,” Optimization, vol. 64, no. 4, pp. 1011–1031, 2015.

[20] W. Ring and B. Wirth, “Optimization methods on Riemannian manifolds
and their application to shape space,” SIAM J. Optim., vol. 22, no. 2,
pp. 596–627, 2012.

[21] E. G. Birgin, J. M. Martı́nez, and M. Raydan, “Spg - software for
convex-constrained optimization,” ACM Trans. on Math. Softw., vol. 27,
no. 3, pp. 340–349, 2001.

[22] M. Yang, L. Zhang, X. Feng, and D. Zhang, “Fisher discrimination
dictionary learning for sparse representation,” in ICCV, 2011.

[23] S. Sra, “A new metric on the manifold of kernel matrices with application
to matrix geometric means,” in NIPS, 2012.

[24] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt: a Matlab
toolbox for optimization on manifolds,” JMLR, vol. 15, no. 1, pp. 1455–
1459, 2014.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2028


