
Accelerated stochastic multiplicative update with
gradient averaging for

nonnegative matrix factorizations
Hiroyuki Kasai

Graduate School of Informatics and Engineering
The University of Electro-Communications

Tokyo, Japan
kasai@is.uec.ac.jp

Abstract—Nonnegative matrix factorization (NMF) is a power-
ful tool in data analysis by discovering latent features and part-
based patterns from high-dimensional data, and is a special case
in which factor matrices have low-rank nonnegative constraints.
Applying NMF into huge-size matrices, we specifically address
stochastic multiplicative update (MU) rule, which is the most
popular, but which has slow convergence property. This present
paper introduces a gradient averaging technique of stochastic
gradient on the stochastic MU rule, and proposes an accelerated
stochastic multiplicative update rule: SAGMU. Extensive compu-
tational experiments using both synthetic and real-world datasets
demonstrate the effectiveness of SAGMU.

Index Terms—nonnegative matrix factorization, multiplicative
update, stochastic gradient, gradient averaging

I. INTRODUCTION

Nonnegative matrix factorization (NMF) is a fundamental
problem for discovering nonnegative latent factors and/or
performing dimensionality reduction. NMF has been suc-
cessfully applied in diverse technical fields, such as pattern
recognition, image/video analysis, text mining, bioinformatics
and Web analysis because non-negativity of the obtained
factors gives understandable interpretations of data of interest.
NMF approximates a nonnegative matrix V as a product of
two nonnegative matrices W and H. More concretely, given
V ∈ RF×N

+ , NMF seeks a factorization of the form

V ≈WH,

where W ∈ RF×K
+ and H ∈ RK×N

+ are nonnegative factor
matrices. K is usually chosen such that K ≪ min{F,N},
that is, V is approximately represented by the two low-rank
matrices. Note that, throughout the paper, we denote scalars
by lower-case letters (a, b, c, . . .), vectors as bold lower-
case letters (a, b, c, . . .), and matrices as bold-face capitals
(A,B,C, . . .). An element at (i, j) of a matrix A is represented
as [A]i,j .

This problem is formulated as a constrained minimization
problem in terms of the Euclidean distance as

min
W,H

1

2
∥V−WH∥2F ,

s.t. [W]f,k ≥ 0, [H]k,n ≥ 0, ∀f, n, k, (1)

where ∥ · ∥F is the Frobenius norm. Because Problem (1) is a
non-convex optimization problem, finding its global minimum
is NP-hard. For this problem, Lee and Seung proposed a
simple but effective calculation algorithm [1] as

H← H⊙ WT V
WT WH

,

W←W⊙ VHT

WHHT
, (2)

where ⊙ (resp. ·
·) denotes the component-wise product (resp.

division) of matrices, which finds a local optimal solution
of Problem (1). This rule is designated as the multiplicative
update (MU) rule because a new estimate is represented as
the product of a current estimate and some factor. The global
convergence to a stationary point is guaranteed under slightly
modified update rules or constraints [2], [3]. Nevertheless,
many efficient algorithms have been developed because the
MU rule is hindered by a slow convergence [4]–[7].

Considering big data processing, an online or stochastic op-
timization algorithm alleviates high computational burden and
memory consumption. Designating the algorithms mentioned
earlier as batch NMF, online NMF and stochastic NMF have
gained much attention recently. They specifically consider
the situation where one column of vn ∈ V (n ∈ [N]) is
fed into the algorithm every iteration, and hn and W are
updated, where V = [v1, . . . ,vN] and H = [h1, . . . ,hN]. For
this particular case, they specifically consider an equivalent
reformulation of Problem (1) as

min
W,H

N∑
n=1

1

2
∥vn −Whn∥22,

s.t. [W]f,k ≥ 0, [H]k,n ≥ 0, ∀f, n, k. (3)

We have several studies [8]–[12] and its robust variant [13] in
literature. However, they still exhibit a slow convergence.

The stochastic gradient descent (SGD) algorithm [14] has
become the method of choice for solving big data optimization
problems. Although it is beneficial because of the low and
constant cost per iteration independent of N , the convergence

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2611

rate of SGD is also slower than that of full GD even for
strongly-convex cases [15]. For this issue, various variance
reduction (VR) approaches that have been proposed recently
have achieved superior convergence rates in (strongly-) con-
vex and non-convex functions. Furthermore, very recently,
SVRMU has been proposed to accelerate the convergence
speed of ONMF [13] by exploiting the VR technique [16]
specialized for the MU rule.

This paper presents a proposal of a novel accelerated
stochastic multiplicative update with a gradient averaging
technique: SAGMU. The proposed SAGMU outperforms the
SVRMU and other existing algorithms as seen later. This paper
is organized as follows. Section II briefly introduces some
state-of-the-art variance reduction algorithms in stochastic
optimization algorithms. Section III proposes the SAGMU
algorithm, and Section IV explains extensions of SAGMU to
the accelerated variant (SAGMU-ACC), and the robust variant
for outliers (R-SAGMU). The convergence analysis is given in
Section V. Exhaustive comparisons in Section VI suggest that
the proposed SAGMU algorithms robustly outperform state-
of-the-art algorithms across different synthetic and real-world
datasets. It is noteworthy that the discussion presented here
is applicable to other distance functions than the Euclidean
distance.

II. VARIANCE REDUCTION ALGORITHMS IN STOCHASTIC
OPTIMIZATION

An algorithm designated to solve Problem (1) without
nonnegative constraints is begin eagerly sought in the machine
learning field. When designating W and H as w, and designat-
ing the n-th (n ∈ [N]) inner term of Problem (3) as fn(w),
respectively, the full gradient decent (GD) algorithm is the
most straightforward approach as

wt+1 = wt − ηgt,

where gt is ∇f(wt) =
∑N

n=1∇fn(wt) and η is stepsize.
However, the calculation of ∇f(wt) is expensive especially
when N is extremely large. A popular and effective alternative
is SGD, which sets gt at t as∇fnt(wt) for the nt-th (nt ∈ [N])
sample that is selected uniformly at random. More specifically,
SGD updates wt as

wt+1 = wt − η∇fnt
(wt),

and assumes an unbiased estimator of the full gradient as
Ent [∇fnt(wt)] = ∇f(wt). Apparently, the calculation cost
per iteration is independent of N . Mini-batch SGD uses
gt = 1/|St|

∑
nt∈St

∇fnt(wt), where St is the set of samples
of size |St|. However, because SGD requires a diminishing
stepsize algorithm to guarantee the convergence, SGD suffers
from a slow convergence rate.

To accelerate this rate, the variance reduction (VR) tech-
niques [17]–[22] explicitly or implicitly exploit a full gradient
estimation to reduce the variance of noisy stochastic gradient,
leading to superior convergence properties. We can regard
this approach as a hybrid algorithm of GD and SGD. A
representative research among them is the stochastic variance

reduced gradient (SVRG) algorithm [17]. SVRG has a double-
loop structure, i.e., the inner loop indexed by t and the outer
loop (i.e., epoch) indexed by s. SVRG reduces the variance
of noisy stochastic gradients in the inner loop by exploiting
the full gradient that is periodically calculated at the outer
loop. The detailed algorithm of SVRG is as follows: it stores
w̃ = ws−1

t indexed by t = 0, · · · ,ms−1 − 1 at the end of
the previous (s−1)-th epoch, where ms−1 is the number of
the inner iterations of the (s−1)-th epoch. It also sets the
initial value of the inner loop in the s-th epoch as ws

0 = w̃.
In parallel, the full gradient ∇f(w̃) at w̃ is computed and
stored. Meanwhile, every inner iteration, it randomly selects
ns
t ∈ [N] for each {t, s} ≥ 0, and computes a modified

stochastic gradient gst as

gst = ∇fns
t
(ws

t)−∇fns
t
(w̃s) +∇f(w̃s).

It should be noted that the calculated gst is also an unbi-
ased estimator of the full gradient. SVRG enjoys a linear
convergence rate for smooth and strongly-convex functions.
Very recently, by extending the strategy of SVRG into the
MU rule, SVRMU has been proposed in [16]. It exhibits
superior performances on convergence speeds and on some
image processing applications.

The stochastic average gradient (SAG) algorithm [18] is
another representative study for the VR technique without
relying on the double-loop structure as SVRG. For the selected
nt ∈ [N] for each t ≥ 0, SAG stores the most recently
computed gradients other than ∇fnt

(wt), and calculates the
modified stochastic gradient as

gt =
1

N

[
∇fnt(wt)−∇fnt(wtnt

) +
∑
n

∇fn(wtn)

]
,

where tnt < t is the iteration in which ∇fnt(wtnt
) was the

most recently evaluated gradient for the nt-th sample at wtnt
.

Although it needs additional memories, SAG competes effec-
tively and sometimes outperforms state-of-the-art stochastic
gradient algorithms including SVRG. Therefore, this present
paper exploits the fundamental approach of SAG for the MU
rule, and demonstrates superior performances against SVRMU
and others.

III. STOCHASTIC AVERAGE GRADIENT MULTIPLICATIVE
UPDATE (SAGMU)

After a brief introduction of the stochastic multiplicative
update (SMU) algorithm introduced in [16], this section details
the proposed stochastic average gradient MU algorithm, i.e.,
SAGMU.

The problem setting is the following: we assume that the
nt-th column of V, i.e. vnt , is selected at the t-th iteration
uniformly at random. Then, hnt

and W are updated by
extending (2) as

hnt ← hnt ⊙
WTvnt

WT Whnt

,

W←W⊙
vnt

hT
nt

Whnt
hT
nt

. (4)

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2612

Especially, the MU rule of W is regarded as a special case
of SGD as presented below.

W←W− St ⊙ (Whnt
hT
nt
− vnt

hT
nt
),

where St ∈ RF×K
+ is an adaptive stepsize of matrix form of

St =
αW

Whnt
hT
nt

.

where 0 < α ≤ 1 is the stepsize ratio that ensures that W and
H are nonnegative when those initial values are nonnegative.
The case of α = 1 produces (4) exactly [16].

Based on this interpretation, we consider a gradient averag-
ing algorithm for SMU. Here, we first designate tnt

for the
iteration index t where the nt-th sample, i.e., vnt

, is most
recently processed. Also, W and hnt

calculated at tnt
are

denoted as Wtnt and h
tnt
nt , respectively. Similarly as SAG,

SAGMU keeps the most recently computed gradients other
than ∇fnt(wt), and calculates the modified gradient using
them. More specifically, using m instead of nt for notation
simplicity, we first randomly select m and update ht

m by
foloowing (4) as

ht
m = htm

m ⊙
(Wt)

T
vm

(Wt)
T Wthtm

m

,

for each t ≥ 0. Then, we update Wt into Wt+1 at t with an
appropriate stepsize St as shown below.

Wt+1 = Wt − St

N
⊙
[N∑
n=1

(Wtnhtn
n (htn

n)T − vi(h
tn
n)T)

− (Wtmhtm
m (htm

m)T − vm(htm
m)T)

+ Wtht
m(ht

m)T − vm(ht
m)T

]
= Wt − St ⊙

[

1

N

(Fsum︷ ︸︸ ︷
N∑

n=1

Wtnhtn
n (htn

n)T +

G(m)︷ ︸︸ ︷
vm(htm

m)T +Wtht
m(ht

m)T
)

︸ ︷︷ ︸
Qt

− 1

N

(Gsum︷ ︸︸ ︷
N∑

n=1

vi(h
tn
n)T +

F(m)︷ ︸︸ ︷
Wtmhtm

m (htm
m)T + vm(ht

m)T
)

︸ ︷︷ ︸
Pt

]
. (5)

Here, we respectively denote the first and the second
term multiplied with 1/N in the squared bracket of (5) as
Qt ∈ RF×K

+ and Pt ∈ RF×K
+ . When St = αtWt/Qt with

the stepsize ratio αt, the update rule in (5) is reformulated as
presented below.

Wt+1 = Wt − αtWt

Qt ⊙ (Qt − Pt). (6)

For an efficient practical algorithm, we store Fsum and Gsum

defined as

Fsum =
N∑

n=1

Wtnhtn
n (htn

n)T , Gsum =
N∑

n=1

vi(h
tn
n)T .

Also, the most recently calculated Wtmhtm
m (htm

m)T and
vm(htm

m)T for the m-th sample are stored as

F(m) = Wtmhtm
m (htm

m)T , G(m) = vm(htm
m)T .

The overall algorithm is summarized in Algorithm 1. It
should be noted that the mini-batch variant of Algorithm 1
is straightforward.

IV. VARIANTS OF SAGMU
This section introduces two variants of SAGMU, which

are an accelerated variant of SAGMU (SAGMU-ACC) and
a robust variant of SAGMU (R-SAGMU).

A. Accelerated SAGMU (SAGMU-ACC)
The acceleration technique proposed in [16] can be also

applicable to SAGMU. We can repeat the calculation of hm

several times, which corresponds to Step 4 in Algorithm 1,
before the computation of Wt. We call this variant as SAGMU-
ACC. The stopping condition is different from that of [16], but
the details are omitted.

B. Robust SAGMU (R-SAGMU)
The outlier in V causes dreadful degradation of the ap-

proximation of V. To address this issue, robust batch-NMF
[23] and robust online-NMF [13], [16] have been proposed.
This variant, R-SAGMU, also handles the same problem
within the SAGMU framework. Given the outlier matrix
R = [r1, . . . , rN] ∈ RF×N

+ , R-SAGMU seeks V ≈WH + R,
of which problem is reformulated from Problem (3) as

min
W,H,R

N∑
n=1

1

2
∥vn −Whn − rn∥22 + λ∥rn∥1,

s.t. [W]f,k ≥ 0, hn ≥ 0, rn ≥ 0, ∀f, n, k,

Algorithm 1 Stochastic average gradient multiplicative update
(SAGMU)

Require: V.
1: Initialize Fsum = Gsum = 0 and F(n) = G(n) = 0 for

all n ∈ [N].
2: for t = 0, 1, . . . do
3: Choose m = nt ∈ [N] uniformly at random.
4: Update ht

m = htm
m ⊙ ((Wt)

T
vm)/((Wt)

T Wthtm
m).

5: Calculate Qt = 1
N (Fsum + G(m) + Wtht

m(ht
m)T).

6: Calculate Pt = 1
N (Gsum + F(m) + vm(ht

m)T).
7: Calculate the stepsize ratio αt.
8: Update Wt+1 = Wt − αtWt/Qt ⊙ (Qt − Pt).
9: Update Fsum = Fsum + Wtht

m(ht
m)T − F(m).

10: Update Gsum = Gsum + vm(ht
m)T −G(m).

11: Update F(m) = Wtht
m(ht

m)T .
12: Update G(m) = vm(ht

m)T .
13: end for

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2613

where λ > 0 is the regularization parameter, and ∥ · ∥1 is the
ℓ1-norm. For this problem, the update rule (5) is redefined as

Wt+1 = Wt − St

N
⊙
[(N∑

n=1

(Wtnhtn
n + rtnn)(htn

n)T

+ vm(htm
m)T + (Wtht

m + rtm)(ht
m)T

)
−

(N∑
n=1

vi(h
tn
n)T + (Wtmhtm

m +rtmm)(htm
m)T

+ vm(ht
m)T

)]
. (7)

Accordingly, we respectively calculate the following:

ht
m ← htm

m ⊙
(Wt)Tvm

(Wt)T Wthtm
m + (Wt)Trtmm

,

rtm ← rtmm ⊙
vm

Wthtm
m + rtmm + λF×1

,

where λF×1 ∈ RF is the vector with all entries equal to λ.

V. CONVERGENCE ANALYSIS

The convergence analysis is similar to [24], [25] and follows
exactly the same as that of [16]. Therefore, we omit the details,
and introduce the result only.

Theorem V.1. Define fN (hn,W) = 1
N

∑N
n=1

1
2∥vn −

Whn∥22, and f̂N (W) := 1
N

∑N
n=1 l(ĥn,W), where ĥn

is already calculated during the previous steps. Consider
f(hn,W) := Ev [l(hn,W)] = limN→∞ fN (hn,W). Assume
that {v}∞n=1 are i.i.d. random processes, and bounded. Iterates
of Wt for 0 ≤ t are compact. The initial W0 is nonnegative
and has a full column rank. f̂N (W) is positive definite and
strictly convex. αt generates a diminishing stepsize of St.
Then, the iterates Wt produced by Algorithm 1 asymptotically
coincide with the stationary points of the minimization problem
of f(hn,W).

VI. NUMERICAL EXPERIMENTS

We evaluate the effectiveness of SAGMU by comparing
with state-of-the-art online and batch algorithms for NMF. We
implemented all of the algorithms in MATLAB1.

A. Convergence behavior under clean synthetic data

We first evaluate convergence behaviors of SAGMU using
synthetic datasets without outlier. For the synthetic data gener-
ation, the element [Wo]f,n of the ground-truth Wo ∈ RF×Ko

+

is generated from a Gaussian distribution with a mean of zero
and variance 1/

√
Ko for any (f, n), where Ko is the ground-

truth rank dimension. Similarly, we generate Ho ∈ RKo×N
+ .

Then, the clean data Vo are created as Vo = PV(WoVo),
where V = [0, 1]F×N , and where PV is the normalization
projector [13]. We set four parameters (F,N,Ko, b), where
b is the batch size, as Case 1:(300, 1000, 10, 100), Case
2:(500, 1000, 10, 100), Case 3:(300, 1000, 30, 100), and Case

1https://github.com/hiroyuki-kasai

Case 1 Case 2 Case 3 Case 4

10
1

10
2

10
3

O
p

ti
m

a
li
ty

 g
a
p

ONMF

INMF

ASAG-MU

SMU

SMU-ACC

SVRMU

SVRMU-ACC

SAGMU

SAGMU-ACC

(a) Optimality gap at final epoch

0.5 [sec]

1.0 [sec] 1.0 [sec] 2.0 [sec]

Case 1 Case 2 Case 3 Case 4

10
1

10
2

10
3

O
p

ti
m

a
li
ty

 g
a
p

 a
t

ta
re

g
e
t

ti
m

e

ONMF

INMF

ASAG-MU

SMU

SMU-ACC

SVRMU

SVRMU-ACC

SAGMU

SAGMU-ACC

(b) Optimality gap at target time

Fig. 1: Optimality gap on synthetic dataset.

4:(300, 5000, 10, 500). The maximum epoch is 500. The fol-
lowing state-of-the-art methods are used for comparison: on-
line MU (ONMF) [13], incremental MU (INMF) [8], ASAG-
MU [11], SMU, SMU-ACC, SVRMU and SVRMU-ACC [16].
Our proposed algorithms include SAGMU and its accelerated
variant SAGMU-ACC in Section IV.

Figure 1 portrays results of functional optimality gap, of
which optimal value is calculated using HALS [5] in advance.
Figures 1:(a) and (b) present the optimality gap at the final
epoch and at the predefined target time, respectively. The target
times for each case are indicated at the top of Figure 1:(b).
Overall, the proposed SAGMU(-ACC) outperforms other al-
gorithms. Although INMF shows lower optimality gap than
SAGMU does at Case 4 in Figure 1:(a), we can see much
better performances of SAGMU in terms of processing time
from Figure 1:(b).

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2614

B. Denoising and clustering of images with outlier

Using a real-world dataset, we next evaluate the perfor-
mances of SAGMU in image processing applications. We
use the CMU PIE dataset2, which contains 337 subjects,
captured under 15 view points and 19 illumination conditions.
The maximum level of the pixel values is set to 50. All
pixel values are normalized. We also randomly add entry-wise
nonnegative outliers with density ρ = 0.9. All outliers are
drawn from the i.i.d. from a uniform distribution U [30, 50].
Ko is fixed to 24. The methods of comparison include ONMF
and its robust variant: R-ONMF [13], and the accelerated
variant of R-SVRMU. The batch-based variant of R-ONMF
(R-NMF) is also evaluated. We use the peak signal-to-noise
ratio (PSNR) for the image denoising, which is calculated as
10 log 10(V 2

max/MSE), where Vmax is the maximum value of
the pixels, and MSE = ∥Vo−WH∥2F /(FN). The normalized
mutual information (NMI) and the purity metrics are used for
clustering accuracy.

Table I shows that R-SAGMU provides better quality of
PSRN than others. In addition, Table II reveals that R-SAGMU
outperforms others with respect to the clustering quality.

TABLE I: Denoising quality comparison.

Algorithm PSNR
R-NMF 23.867± 0.168
ONMF 11.208± 0.008
R-ONMF 23.452± 0.101
R-SVRMU 24.497± 0.210
R-SAGMU 25.205± 0.124

TABLE II: Clustering accuracy comparison.

Algorithm NMI Purity
R-NMF 0.530± 0.018 0.403± 0.023
ONMF 0.246± 0.011 0.192± 0.011
R-ONMF 0.406± 0.038 0.322± 0.028
R-SVRMU 0.618± 0.024 0.508± 0.030
R-SAGMU 0.662± 0.014 0.561± 0.029

VII. CONCLUSIONS

This present paper has proposed a novel accelerated stochas-
tic multiplicative update with a gradient averaging technique:
SAGMU. Numerical comparisons suggest that SAGMU ro-
bustly outperforms state-of-the-art algorithms across different
synthetic and real-world datasets.

ACKNOWLEDGEMENTS

H. Kasai was partially supported by JSPS KAKENHI Grant
Numbers JP16K00031 and JP17H01732.

2http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html

REFERENCES

[1] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in NIPS, 2001.

[2] C.-J. Lin, “On the convergence of multiplicative update algorithms
for nonnegative matrix factorization,” IEEE Transactions on Neural
Networks, vol. 18, no. 6, pp. 1589–1596, 2007.

[3] R. Hibi and N. Takahashi, “A modified multiplicative update algorithm
for euclidean distance-based nonnegative matrix factorization and its
global convergence,” in ICONIP, 2011.

[4] C.-J. Lin, “Projected gradient methods for non-negative matrix factor-
ization,” Neural Computing, vol. 19, no. 10, pp. 2756–2779, 2007.

[5] A. Cichocki and P. Anh-Huy, “Fast local algorithms for large scale
nonnegative matrix and tensor factorizations,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
vol. 92, no. 3, pp. 708–721, 2009.

[6] N. Gillis and F. Glineur, “Accelerated multiplicative updates and hi-
erarchical als algorithms for nonnegative matrix factorization,” Neural
Computation, vol. 24, no. 4, pp. 1085–1105, 2012.

[7] J. Kim, Y. He, and H. Park, “Algorithms for nonnegative matrix and
tensor factorizations: A unified view based on block coordinate descent
framework,” Journal of Global Optimization, vol. 58, no. 2, pp. 285–
319, 2014.

[8] S. S. Bucak and B. Gunsel, “Incremental subspace learning via non-
negative matrix factorization,” Pattern Recognition, vol. 42, no. 5, pp.
788–797, 2009.

[9] A. Lefèvre, F. Bach, and C. Févotte, “Online algorithms for nonnegative
matrix factorization with the itakura-saito divergence,” in WASPAA,
2011.

[10] N. Guan, D. Tao, Z. Luo, and B. Yuan, “Online nonnegative matrix
factorization with robust stochastic approximation,” IEEE Transations
on Neural Network Learning Systems, vol. 23, no. 7, pp. 1087–1099,
2012.

[11] R. Serizel, S. Essid, and G. Richard, “Mini-batch stochastic approaches
for accelerated multiplicative updates in nonnegative matrix factorisation
with beta-divergence,” in MLSP, 2016.

[12] R. Zhao, V. Y. F. Tan, and H. Xu, “Online nonnegative matrix factor-
ization with general divergences,” in AISTATS, 2017.

[13] R. Zhao and V. Y. F. Tan, “Online nonnegative matrix factorization with
outliers,” in ICASSP, 2016.

[14] H. Robbins and S. Monro, “A stochastic approximation method,” The
Annals of Mathematical Statistics, pp. 400–407, 1951.

[15] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization mehtods for large-
scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311, 2018.

[16] H. Kasai, “Stochastic variance reduced multiplicative update for non-
negative matrix factorization,” in ICASSP, 2018.

[17] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using
predictive variance reduction,” in NIPS, 2013.

[18] N. L. Roux, M. Schmidt, and F. R. Bach, “A stochastic gradient method
with an exponential convergence rate for finite training sets,” in NIPS,
2012.

[19] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent
methods for regularized loss minimization,” Journal of Machine Learn-
ing Research, vol. 14, pp. 567–599, 2013.

[20] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental
gradient method with support for non-strongly convex composite objec-
tives,” in NIPS, 2014.

[21] Y. Zhang and L. Xiao, “Stochastic primal-dual coordinate method for
regularized empirical risk minimization,” SIAM Journal on Optimization,
vol. 24, no. 4, pp. 2057–2075, 2014.

[22] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takac, “SARAH: A
novel method for machine learning problems using stochastic recursive
gradient,” in ICML, 2017.

[23] H. Jin, N. Feiping, and D. Chris, “Robust manifold nonnegative matrix
factrization,” ACM Transations on Knowledge Discovery from Data,
vol. 8, no. 3, pp. 1–21, 2014.

[24] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” Journal of Machine Learning Research,
vol. 11, pp. 19–60, 2010.

[25] L. Bottou, “Online algorithm and stochastic approximations,” in On-Line
Learning in Neural Networks, D. Saad, Ed. Cambridge University Press,
1998.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2615

