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Abstract—Compressive spectral imaging (CSI) architectures
allow to reconstruct spectral images from a lower number of
measures than the traditional scanning-based methods. In these
architectures, the coded aperture design is critical to obtain
high-quality reconstructions. The structure of coded apertures
is traditionally designed without information about the scene,
but recently side information-based architectures provide prior
information of the scene, which enables adaptive coded aperture
designs. This work proposes the development of an adaptive
coded aperture design for spectral imaging with the single pixel
camera, based on a multi-resolution approach. An RGB side
image is used to define blocks of similar pixels, such that they
can be used to design the coded aperture patterns. This approach
improves the reconstruction quality in up to 23dB compared with
traditional single pixel camera, and the computation time in up
to 99.5% because it does not require an iterative algorithm.

I. INTRODUCTION

Spectral imaging techniques capture a 3D data cube, with
two spatial dimensions (x,y) and one spectral dimension (\)
along the electromagnetic spectrum. The spectral information
enables object classification in areas such as artwork conser-
vation [1], biomedical imaging [2] and food quality [3]. Con-
ventional scanning-based spectral images (SI), such as whisk-
broom or pushbroom spectrometers, involve massive amounts
of data, which increase storing and processing costs. On the
other hand, compressive spectral imaging (CSI) acquires the
spatial/spectral information applying the principles established
by compressive sensing (CS) [4], which allows SI retrieval
from a lower number of measures than the traditional methods.
Specifically, CSI establishes that it is possible to retrieve the
spatial and spectral information from a small number of sam-
ples, under the assumption that it has a sparse representation
in a given basis W. In particular, a SIF € RM*N>L where M
and N are the spatial dimensions and L represents the number
of spectral bands, has a dispersion level S if its vector form
f € RMNL can be written as a linear combination of .S vectors
on any basis ¥, such that f = WO with S < MNL. This
condition allows to recover F from K < M N L projections.

CSI architectures often use 2D detectors [5], [6], [7], whose
costs increase with the resolution. On other hand, the single
pixel camera (SPC) [8] has been recently employed as a
low-cost CSI sensor [9]. In particular, SPC uses a single
point detector such as a whisk-broom spectrometer, and a
coded aperture. Specifically, the SPC sensing process can be
represented in matrix form as g = Hf, where H is the transfer
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function of the optical system [10], which is directly related
to the coded aperture design.

Recent works have established the importance of coded
aperture designs to retrieve high-quality SI using a small
number of projections [10], [11]. More specifically, the tra-
ditional coded aperture (CA) design in [12] does not exploit
prior information about the SI, so that only generic designs
are possible, such as Hadamard, Bernoulli or uniform coded
apertures [10]. On other hand, grayscale side information
has been recently employed in coded aperture design for
CASSI architecture[13]. This design improves the quality of
the reconstructions because it takes into account the spatial
distribution of the scene.

In this work, an adaptive coded aperture design for the single
pixel camera based on an RGB image of the spectral scene
is proposed, as illustrated in Fig. 1. Specifically, this coded
aperture design takes advantage of the spatial similarities in the
scene using a multi-resolution approach, and aims at obtaining
high-quality and fast multi-resolution reconstructions.
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Fig. 1. Scheme of the SPC used to acquire the spatial and spectral information
with RGB side information.

II. SIDE INFORMATION-BASED SPC SENSING MODEL FOR
SPECTRAL IMAGING

As illustrated in Fig. 1, the proposed system is composed
by two arms, the first one related to the SPC and the other
acquires the side information with an RGB sensor.

A. Single pixel camera sensing model

The single pixel architecture illustrated in Fig. 1 employs a
coded aperture T@ ;) that spatially modulates all the spectral
bands from the input scene F(; ; ;) with the same pattern, where
1,7 index the spatial coordinates, [ accounts for the spectral
band, and % indexes each captured snapshot. Specifically,
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the coded aperture Tl(i',j) is a binary pattern whose spatial
distribution determines the quality of the reconstructed scene.
In this case, the binary levels are either 1 or —1. In practical
terms, the modulation effect caused by the —1 entries can be
implemented by acquiring a measurement with an all ones
coded aperture and subtract it from each captured snapshot.
Mathematically, the coded aperture effect over the input scene
is represented as
K

Fign =¥ Ty M
Then, the modulated scene F is concentrated in a single spatial
point by the condenser lens, and captured by a whisk-broom
spectrometer. This detector splits the incoming light rays in a
discrete measure of the spectrum for each band as

k
g5 =22 Fiin Tl )

i g
fori=1,2,...,M,5=1,2,...,N,and [ =1,2,..., L. The
acquisition system can also be modeled as

gf =hif, 3)

where hy is the vectorization of the coded aperture for each
snapshot k, f; is the vectorization of the [-th band of the SI
F. In general, the sensing model for all shots captured for the
[-th band can be written as

g = Hfy, “

with g :ngl,...,glK]T, His a K x MN matrix given
by H = [h{,...,hj], and K is the number of shots. It is
important to remark that each shot employs a different coded
aperture pattern. Furthermore, the sensing model for all the
spectral bands and K shots is given by

g = HIf, (5)

T
where g = [(gO)T ey (gL_l)T , H is the sensing matrix
whose structure is illustrated in Fig. 2, which can be obtained
as a block diagonal matrix
H=1,®H, (6)
where I, is an L x L i(ilentity matrix, such that the number of
columns and rows of H is M NL and yM N L, respectively,

with v = % as the compression ratio, taking values vy €
[0, 1].

B. RGB Camera sensing model for spectral imaging

The model used for acquiring the RGB image assumes that
the detector has an equal response for all spectral bands in
each spectral channel (Red, green and blue). Therefore, the
acquisition of the RGB image can be modeled as the linear
system given by

g = Hf, @)

where H = I3® (14, 1,73 ® Insnv). Figure 3 shows an example
of the structure of H, where white squares represent a 1 value
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Fig. 2. SPC sensing matrix ﬂ, with M =2, N =5,y=0.5and L = 4.
White squares represent a positive value 1 according to the coded aperture
design, black squares represent —1, and gray zones are O.

for the color indicated by the border, and gray zones are
zero. The acquired RGB image has an important role for this
work, because it is used to design the coded aperture patterns.
Furthermore, it can be also included in the reconstruction
problem to improve the quality of the recovered data cube.
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Fig. 3. RGB sensing matrix H, for M = 2, N = 5, and L = 9. White
squares represent 1 and gray zones are 0.

III. CODED APERTURE DESIGN BASED ON SUPER-PIXELS

The input for the coded aperture design is the RGB image
captured as in (7). Specifically, it is used to identify the
uniform zones in the scene, such that similar pixels can be
grouped into a super-pixel. The resulting map of super-pixels
is then used to design the coded aperture pattern. The main
goal is to obtain multi-resolution (MR) coded apertures whose
features match with the super-pixel map.

First, to determine the super-pixel map, a clustering method
such as the SLIC algorithm [14] is employed. A simple
example of this process is illustrated in Fig. 4, where each
color represents a super-pixel. Note that the color super-pixel
map is decomposed as 3 coded aperture patterns, where (3 is
the desired number of super-pixels, and it is a required input
for the SLIC method. To obtain the set of CA T, the map of
super-pixels is used to generate a multi-resolution decimation
matrix A, as in [15], where each row of A represents the
integration of pixels into each super-pixel. It is worth noting
that the size of A depends on the 8 as A € ROXMN,
Moreover, the coded aperture design is directly related to the
design of the matrix H from (4) which, in turn, determines the
sensing matrix H in (6).
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Fig. 4. Scheme of the process to generate MR coded apertures. Each super-
pixel of the RGB scene is associated to a single coded aperture block.

Several SPC snapshots are required in order to provide good
quality reconstructions. In this work, we propose to capture
(£ measurements, in other words, the number of snapshots is
equal to the number of desired super-pixels. This condition
imposes that

rank(H) = 8. 8

Therefore, a full rank matrix W is used to design the sensing
matrix for each spectral band as

H=WA. ©))

Specifically, W € RP*# is a Hadamard matrix, because its
inverse is the same transposed escalated matrix. This prop-
erty enables the fast multi-resolution reconstruction approach
proposed in Section V.

Coded apertures for each snapshot are obtained by rearrang-
ing each row of H in (9) as a matrix. The resulting MR coded
apertures, whose block features match the super-pixels from
A are also illustrated in Fig. 4.

Furthermore Fig. 5(b) and (c) show two MR coded apertures
obtained with the proposed design for the scene in Fig. 5(a).

(a)

Fig. 5. Examples of the designed MR coded apertures for the spectral image
in (a), using the proposed approach on (9).

IV. RECONSTRUCTION WITH SIDE INFORMATION

In order to reconstruct the spatio-spectral data cube, the SPC
measurements from (5) are stacked with those from the RGB
camera in (7), as well as the corresponding sensing matrices

- a ~ g
H=|_ =2|.
{H] 8 [g]
Note that H is obtained as in (6), using the matrix H from

9).

(10)
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Then, the spatio-spectral data cube can be obtained by
solving the regularization problem given by

f':\Il{argminéHI:I\Ilé—g|\§+7'||é||1}, (1)

where 7 is a regularization parameter, 0 is the sparse
representation of f in the basis W. It is important to remark
that the new compression ratio 7, taking into account the RGB

image is given by

(L +3)
Y= 1 (12)

where 4 & v as L increases.

V. FAST MULTI-RESOLUTION (FMR) RECONSTRUCTION

Several applications require fast SI reconstructions, how-
ever, traditional reconstruction methods solve the I —[; norm
optimization in (11) whose complexity depends on the data
dimensions. To date, fast reconstruction alternatives have been
developed [16]. In this work, we propose to obtain a fast
multi-resolution reconstruction based on the coded aperture
design from section III. FMR reconstructions of the SI can
be obtained without solving a minimization problem, this is
possible by taking advantage of the designed coded aperture
with a Hadamard structure. Using this approach, the complex-
ity to obtain the SI is reduced only to one matrix product. First,
taking into account that for some Hadamard matrix W € R#*5

WIW = g, (13)
where I3 is a 8 x (8 identity matrix. If we multiply (4) by w7,
and replacing H as in (9) we obtain that

fi=(1/8)W'g = (1/8)W  WAT,. (14)

Then, multiplying f by some matrix A, such that AA ~ I
yields

f, = Af, = (1/8) AW WAT, ~ . (15)

Thus, the best option is to have A as the transpose of A, with
normalized rows. Then, a FMR reconstruction f of the SI is
obtained with high quality at low computational complexity,
when W is a Hadamard matrix and H follows the design in

).
VI. SIMULATIONS AND RESULTS

Several simulations were realized to test the performance
of the proposed approach when the number of bands L for
the SPC measures is varied from 6 to 30, for the compression
ratio v = {0.03,0.07,0.25}, i.e. approximately 512, 1024 and
4096 measures, respectively. Simulations use two data cubes
with 128 x 128 pixels of spatial resolution [17]. Results are
compared with respect to three different approaches. In the first
approach, the RGB image is not stacked to the SPC measures,
i.e. the classical SPC, using a traditional coded aperture design
based on randomly permuted rows of the Hadamard transform
with unit-norm columns [12]. The second approach uses the
proposed architecture stacking the RGB image to the SPC
measures (SPC + RGB) as in (10) with traditional Hadamard-
based patterns. The third approach uses the coded aperture
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design proposed in section III and the RGB image is stacked
to the SPC measures as in (10) (RGB + SPC + CA design).
These three approaches obtain the data cube reconstructions
by solving (11) using the corresponding matrices. The fourth
approach uses the same configuration as the third approach but
recovers f with the fast multi-resolution (FMR) reconstruction
proposed in (15).

For each simulation, SPC measures are obtained using the
model in (5), and the RGB measures are obtained using the
model in (7). In all cases (except for the case when the FMR
reconstruction is obtained) the SI is recovered solving the
minimization problem in (11) through the gradient projection
for sparse reconstruction algorithm (GPSR) [18]. The basis
representation used in this paper is ¥ = ¥, W5, where ¥, is
a 2D wavelet Symmlet 8 basis, and W, is a 1D discrete cosine
transform (DCT). The comparisons are expressed in terms
of peak signal-to-noise ratio (PSNR). All simulations were
conducted and timed using an Intel Core 17-6700 @3.40GHz
processor, and 32GB RAM memory.

In order to illustrate the improvement of the proposed
approach, Fig. 6 shows the quality of the reconstruction for
each value of L and the two scenes, using each approach,
where the quality improvements for the SPC+RGB+CA design
are clearly noticeable. Moreover, the FMR reconstruction is
better than the non-designed traditional sensing matrix for
SPC+RGB in some cases. This is because the FMR ensures
edge recovery.
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Fig. 6. Comparison of the reconstruction quality using the different proposed
approaches and the traditional SPC for the two scenes, and three different
values of .

On the other hand, when we focus on the computation time
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to recover the SI, Fig. 7 shows the comparison of time required
by each approach including the calculation of the super-pixel
map (when required). It is easy to see that the fast multi-
resolution (FMR) approach is the faster option, although it
does not provide the best reconstruction quality. However, it
provides a good trade off between time and quality, being
the faster approach and the second best quality. Furthermore,
this approach uses the same measurements than the proposed
approach, which obtains the highest PSNR (SPC + RGB + CA
design). This is an interesting property, because with the same
measurements it is possible to obtain fast, and good quality
images when there is enough time for computation.
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Fig. 7. Comparison of computation time to reconstruct the SI using the

different proposed approaches and the traditional SPC for the two scenes, and
three different values of ~.

Moreover, figures 8 and 10 compare the RGB mappings of
the reconstructed data cubes, where it can be easily noticed
that the proposed reconstruction approaches provide quality
improvements. Furthermore, Fig. 9 shows a comparison be-
tween the spectral signatures of two points from data cube 1,
for each reconstruction approach, to show that the proposed
approaches reconstruct a closer spectral signature to the ground
truth.

VII. CONCLUSION

This paper presented an adaptive coded aperture design for
the single pixel camera. The proposed design uses a side
RGB image of the scene to generate a super-pixel map that
to generate multi-resolution coded apertures based on pixel
spectral similarities. Simulations show that the proposed coded
apertures improve the reconstruction quality in up to 23dB
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Fig. 8. RGB Comparison between the ground truth with the different recon-
struction approaches for the data cube 1 with spatial dimensions 128 x 128,
L = 30 and v = 0.07. (a) Ground truth; and the reconstructions using
(b)SPC, (c) SPC + RGB, (d) SPC + RGB + CA design, and (¢) FMR.
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Fig. 9. Comparison of the spectral signatures of the recovered data cube 1
with L = 30 using the traditional and proposed approaches for the two spatial
points highlighted in Fig. 8.

Fig. 10. RGB Comparison between the ground truth with the different recon-
struction approaches for the data cube 2 with spatial dimensions 128 x 128,
L = 30 and v = 0.07. (a) Ground truth; and the reconstructions using
(b)SPC, (c) SPC +RGB, (d) SPC + RGB + CA design, and (e) FMR.
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of PSNR with respect to the traditional single pixel camera.
In addition, a non-iterative fast multi-resolution reconstruction
method, motivated by the proposed CA, has been proposed.
Simulation results show that this non-iterative reconstruction
is up to 99.5% faster than traditional iterative methods, at the
expense of lower image quality.
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