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Abstract—This paper presents an improved version of a
previously-proposed ear-acoustic biometric system for personal
authentication. Even though the previous system provided a fast,
accurate, and easy means of authentication, it employed notice-
ably audible probe signals to extract ear acoustic-features, signals
which might interrupt user activities. To overcome this problem,
this paper presents silent user authentication by employing
inaudible signals in the place of audible signals for capturing
ear acoustic-features. A comparative study using a number
of audible and inaudible signals demonstrates that inaudible
signals provide accurate authentication under the condition that
the relative position of the earphone device against the ear
canal is constant, which is a requirement for continuous user
authentication. On the other hand, audible signals offer better
accuracy when the earphone position changes, which is often the
case in initial user authentication. This suggests the idea of a
hybrid system that employs both audible and inaudible signals
for, respectively, accurate initial authentication and user-friendly
continuous authentication.

I. INTRODUCTION

Biometric authentication minimizes the risk of information
being lost, forgotten, stolen, or leaked. Various kinds of bio-
metric authentication have been studied over the past several
decades, including fingerprint, facial, iris, retina, and voice
recognition [1], [2], [3]. These approaches normally require
users to perform some kind of action, such as putting a finger
on a scanner or facing a camera. With the proliferation of in-
ear personal-assistant devices, more commonly referred to as
hearable devices, such as ‘The Dash’ [4] and ‘Xperia Ear’ [5],
there is a greater need for in-ear biometric authentication.
Biometric authentication based on human ears has been mostly
discussed in the context of image recognition [6]. Like the
ridge patterns in fingerprints, outer ear (pinna) patterns carry
personal identity information and are more stable than those of
faces, which change with changes in facial expressions. While
considerable progress has recently been made in ear biomet-
rics, there still remain several technical difficulties arising from
such factors as illumination variation and occlusion, which are
often encountered in outdoor conditions [7].

Another promising approach to in-ear authentication is
based on the unique acoustic characteristics of individual ear
canals. Evidence for personal identity in ear acoustics can be
found in research done on virtual reality systems in which
users sense 3D sounds via binaural earphones [8]. Methods
for modeling and estimating external ear acoustics has been
presented in [9], [10]. These studies, however, do not focus

on authentication of a person by means of ear canal acoustics.
An initial investigation on using the acoustic properties of the
pinna and ear canal for recognition has been reported in [11],
[12]. These works refer to this kind of recognition as acoustic
ear recognition. The term acoustic was used to differentiate
it from ear recognition [6] that focuses on recognizing pinna
pattern shapes on the basis of image processing. Since our
work hinges on the acoustic characterization of the ear canal
for personal authentication, we refer to this as ear acoustic
biometrics. Recently, there has been a revival in ear acoustic
biometrics research. Advances in MEMS technology has al-
lowed transducers (microphones and loud-speakers) to be built
in far more miniature sizes and with relatively flat responses.

In earlier studies, [11] and [12], audio signals with audible
frequency ranges up to 15 kHz were used to capture ear acous-
tics of individuals, and they achieved error rates ranging from
0.8% to 18.0%, depending on the type of capturing device.
Another work in this line has reported holistic development
of a biometric system based on acoustic ear recognition, but
its best performance showed an error rate of 14.9% [13]. The
high error rates of such methods restrict their applicability to
real-world applications.

In [14], the authors have proposed a unique biometric
authentication method that exploits the acoustic characteristics
of human ears and achieves an EER of less than 1%. It
transmits a probe sound signal from an earphone device to
the ear canal of an individual and records an echo signal.
Then, using the probe and echo signals, it extracts ear acoustics
for the individual. The system is fast, accurate, and does not
require the user to perform any kind of action. However, the
audible sound signals used in this method are noticeable and
may often interrupt user activities during authentication.

In this paper, we attempt to overcome this problem by
employing inaudible sound signals to achieve silent authen-
tication, so that repetitive and continuous authentication [15]
will not irritate or interrupt the user. To the best of our
knowledge, this is the first attempt reported in the literature to
use inaudible signals for ear biometric authentication. In our
study, we analyze and demonstrate its efficacy in comparison
to conventional audible-signal-based authentication.

This paper is organized as follows: Section II describes
our ear acoustic authentication system; Section III presents
application of inaudible signals for silent authentication and
proposes a hybrid ear authentication method; Section IV
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Fig. 1: Overview of ear authentication system. FFT refers to
Fast Fourier Transformation, CSD to Cross Spectral Density
extraction, MFCC to MFCC extraction, and Post proc. to
further processing steps, such as normalization and dimen-
sionality reduction.

describes data collection and presents results of performance
evaluations with respect to inaudible and audible probe signals.
In Section V, we summarize our work and discuss issues to
be covered in future work.

II. EAR ACOUSTIC AUTHENTICATION SYSTEM

Fig. 1 shows the system architecture for ear acoustic
authentication [14]. For each authentication trial, a probe
signal x(t) is transmitted through the ear canal, and the echo
signal y(t) is recorded. Given a pair of such echo signals,
(ye(t), yt(t)), recorded over enrollment and test stages, we
attempt to determine whether or not they belong to the same
individual, with probe signal x(t) assumed to be known prior
to the authentication.

A. Ear acoustic feature extraction

For each of the two echo signals, ear acoustic features are
extracted using the cross spectrum between yi(t), i ∈ {e, t}
and x(t). The steps are as follows:

• Fast Fourier Transformation (FFT) is applied to x(t) and
y(t) to obtain their Discrete Fourier Transforms X(w) and
Y (w), respectively. Here, w = 2πk

N , where k ∈ {0, 1, ..., N−
1} and N is the length of input sequences x(t) and y(t).

• Cross spectral density (CSD) between X(w) and Y (w) is
calculated as

H(w) =
X(w)

∗
Y (w)

X(w)
∗
X(w)

(1)

, where X(w)
∗ is the complex conjugate of X(w). Notice

that H(w) represents the ear canal transfer function.
• Mel-frequency Cepstral Coefficients (MFCCs) [16] are

extracted from the magnitude spectrum
∣∣H(w)

∣∣ of the ear
canal transfer function. To this end, Mel-filter banks are
applied, and a logarithmic compression and discrete cosine
transform (DCT) are then applied. After denoting the output
of an M-channel filter bank as S(m),m = 1, 2, ...,M , the
MFCCs can then be computed as

cn =
M∑
m=1

logS(m) cos

[
πn

M
(m− 1

2
)

]
(2)

, where n = 1, ..., Nf < Nd is the index of cepstral
coefficients. In comparison to other features (e.g., linear fre-
quency cepstral coefficients), we have found that mel-filters

Fig. 2: Spectrograms of the three linear chirps used for
experimental purposes. P1 sweeps across the entire range of
audible frequencies (1 Hz - 18 kHz). The P2 signal covers
inaudible frequencies (18 kHz - 48 kHz) and P3 sweeps across
the entire available frequency range (1 Hz - 48 kHz) covering
both audible and inaudible ranges.

help more in reducing intra-class variance in ear acoustic
features for higher frequencies, particularly for inaudible
signals. Also, the application of MFCCs is well-known for
its great success in various fields of speech information
processing, including automatic speech recognition (ASR),
speaker recognition, and emotion recognition. We consider
it to potentially have more than a little advantage in acquiring
the characteristics of ear acoustics at quite low dimensions
(e.g., 20 in our experiments).

• Further, we post-process the MFCCs by removing the mean
and scaling each dimension to unit variance. The normalized
MFCCs are then transformed to a low-dimensional space
using linear discriminant analysis (LDA) [11].

B. Similarity Measure
For computing the similarity between extracted ear acoustic

features (ce, ct) corresponding to those extracted using the
two echo signals (ye(t), yt(t)), cosine similarity is defined as
follows:

s(ce, ct) =
ce

Tct√
‖ce‖ ‖ct‖

(3)

where c = [c1, c2, ..., cNf
]
T. If s(ce, ct) > θ, then the two

features are considered to be from the same person (ear). Here,
θ is a predetermined threshold.

III. SILENT AUTHENTICATION USING INAUDIBLE SIGNALS

To achieve silent authentication, we attempted to use in-
audible signals for capturing ear acoustics. We believe that
inaudible signals are as capable as audible signals in capturing
unique individual ear-canal features, as will be shown later in
our experimental results. Since the audible frequency range of
an adult usually lies in the range of 20 Hz to 16 kHz, we
regard audio signals with frequencies of 18 kHz or above as
inaudible signals.

While the ear canal acts as a resonant system with a typical
resonance frequency at around 2.5 kHz, it may vary from
person to person [11]. Hence, the audible frequency range
can be used to capture the dominant formants representing
person-dependent traits. However, the length of an ear canal
and its curvatures have dimensions that vary from millimeters

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1422



to centimeters, which can only be captured using smaller
wavelengths, and, for this purpose, frequencies in an inaudible
range can be helpful in modeling minuscule variations.

In earlier work, due to hardware limitations, only frequen-
cies up to 16 kHz could be used to collect the ear acous-
tic data. With recent advancements in microphone-integrated
earphones, frequencies as high as 48 kHz can be transmitted
through them, and they have become increasingly available
on the market. For microphone-integrated earphones, we used
a developmental version of EarPods that has a maximum
operating frequency of 48 kHz, on a desktop computer with an
audio interface having a 96 kHz sampling frequency and a 24-
bit depth. Hence, we were able to transmit inaudible signals
with a maximum frequency as high as 48 kHz.

For our experimental purposes, we collected ear acoustic
data for individuals using three kinds of sinusoidal linear
chirps, each 0.1-second-long, as probe signals (P1, P2 and
P3 as shown in Fig. 2). A linear chirp is a signal in which
the frequency varies exactly linearly with time. Chirp is used
because it covers all the frequencies and is easy to manage.
Also, inaudible signals can offer sufficient robustness against
background noise, such as speech and music, as the frequency
bands of the inaudible signal and the noise do not overlap.

A. Analysis of the effects on captured ear acoustics of different
positioning of an earphone against the ear canal

To investigate the effects on captured ear acoustics of
changes in the relative position of an earphone against the
ear canal, we analyzed the mel-spectrum features of the ear
acoustics of an individual, captured by the means of the probe
signals sweeping over the entire frequency range of 1 Hz
to 48 kHz (P3 as shown in Fig. 2) for 2 scenarios. The
first scenario compared captured ear acoustic features when
the relative position of earphone against the ear canal was
fixed across all the recordings of ear acoustics (Fig. 3a),
while the second scenario analyzed captured ear acoustic
features when the positioning of the earphone was varied
across all the recordings (Fig. 3b). To introduce variability
in the positioning of earphones, we asked the individuals to
remove and replace their earphones after each recording. Note
that a single recording involved transmitting a probe signal one
time and receiving the corresponding echo signal. Features
captured by means of the P3 probe signals were carefully
analyzed because they contained both audible and inaudible
parts, and, hence, we were able to analyze the earphone’s
positioning effect on the two frequency ranges as well.

In the first scenario, we observed that the captured ear
acoustic features had negligible intra-class variance for both
the audible and inaudible parts. In contrast to this, with dif-
ferent positioning of earphones, we observed a large variation
across the captured ear acoustic features. Also, the inaudible
parts had higher variability across different recordings than the
audible parts. Similar observations were obtained for other
individuals as well. This indicates that the placement of an
earphone against the ear canal contributes significantly to the
captured ear acoustic features. Also, the smaller wavelengths

TABLE I: Authentication steps, relative position of earphone
device against ear canal across recordings during those authen-
tication steps, and the probe signals used in the corresponding
authentication steps

Authentication step Relative position of earphone Probe signal

Initial Different position Audible
Continuous Fixed position Inaudible

of inaudible signals are more sensitive than those of audible
signals to the relative position of the earphone device against
the ear canal. That is why we propose a hybrid system that
employs both audible and inaudible signals at, respectively,
initial and continuous authentication stages. Such a hybrid
system is able to maintain both high authentication accuracy
and good usability.

B. Proposed hybrid system

We here propose an authentication system employing the
2-step authentication (Table I), as explained below:

• Initial authentication: First time authentication after wearing
the earphone. Here, the relative position of the earphone
device will always be different between enrollment and test
authentication sessions. According to our above-described
analysis, this condition will lead to higher variability in
the ear acoustic features captured by inaudible signals as
compared to those of audible ones. Thus, for higher accuracy,
audible probe signals will be used for this authentication.

• Continuous authentication: Authentication when the ear-
phone device has not been removed after the initial authen-
tication. The relative position of the earphone device against
the ear canal does not change across authentication sessions
and, hence, we expect inaudible signals to perform as well
as audible, along with no interruption in user activities.
Therefore, for this step inaudible probe signals are used for
silent, continuous authentication.

Both of the authentication steps follow the authentication
procedure described in Section II.

IV. EVALUATION

A. Data collection
To evaluate the performance of ear acoustic authentication

using inaudible as well as audible signals, we collected ear
acoustic data for 25 individuals, using the audible (P1) and
inaudible (P2) probe signals described in Section III. For each
individual, ear acoustics were collected over five recording
sessions in which the earphone was removed and then replaced
into the ear canal after each session so as to introduce vari-
ability in wearing conditions. During each session, the relative
position of the earphone against the ear canal was assumed to
be fixed, and each of the two probe signals was transmitted
five times to capture ear acoustics under the condition of fixed
earphone position.

For each individual for each of the two probe signals,
then, we were able to capture five sets of ear acoustics, all
featuring different earphone wearing conditions, to be used
for the evaluation of the initial authentication step. Also, each
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(a) Fixed earphone position across all recordings. (b) Different earphone positions across all recordings.

Fig. 3: Mel-spectrum features of ear acoustics belonging to the same person, captured during various recordings (rec.). Fig. 3a
shows the ear acoustic features captured when the relative position of the earphone against the ear canal was fixed for all five
recordings, while Fig. 3b shows the ear acoustic features captured when the relative position of the earphone against the ear
canal was different for all five recordings because of the repositioning of the earphone after each recording.

TABLE II: Systems used for evaluation

System Feature Post proc. Similarity measure

System 1 MFCCs Normalization Cosine Similarity
System 2 MFCCs Norm.+ LDA Cosine Similarity

of the five sets contained five ear acoustics, all captured with
the same earphone positioning against the ear canal, to be used
for evaluation of the continuous authentication step.

B. Experimental setup
We compared the performance of audible and inaudible

probe signals for both of the initial and continuous authen-
tication steps using two evaluation systems. Each of the two
systems basically conformed to the architecture shown in
Fig. 1, with two different types of post-processing to MFCCs
(Table II). For authentication, 9600-point FFT was applied
on both the probe and echo signals to extract 20-dimensional
MFCCs representing the ear acoustics of an individual. Train-
ing data was prepared for training the post-processing steps
on the MFCCs. A set of 25 subjects was randomly divided, 5
times, into two subsets of 15 and 10 subjects. For each of the
5 times, ear acoustics features for 15 subjects were used for
calculation of means and variances for normalization, as well
as for training for LDA transformations. LDA transformation
matrices were learned in order to transform 20 dimensional
MFCCs into 12 dimensional features. The above-mentioned
parameters were chosen on the basis of earlier evaluations that
are explained in [14]. Ear acoustic features corresponding to
the other 10 subjects were used for creating evaluation data.

For evaluating the performance of the proposed system, we
created genuine and impostor pairs for both the initial and
continuous authentication steps. A “genuine pair” is one in
which enrollment and test data belong to the same individual,
whereas, for an impostor pair, the enrollment and test data

belong to different persons. Equal error rates (ERR) were
observed for each of the 5 times of evaluation, on the basis of
which the overall performance of the proposed systems was
evaluated by averaging EERs over the 5 evaluations. An EER
is one having an operating point (threshold θ) for which the
false acceptance rate and false rejection rate are equal.

For the continuous authentication step, genuine pairs for
an individual were created by picking ear acoustic features
captured during the same recording session. Such features
would include the same earphone wearing conditions that are
required for continuous authentication. For the initial authen-
tication step, genuine pairs were created for an individual
by picking ear acoustic features captured during 2 different
recording sessions. Such features would have different ear-
phone positions against the ear canal, which meets the initial-
authentication requirement. For impostor pairs, in both the ini-
tial and continuous authentication steps, a pair of ear acoustic
features corresponding to two different individuals was chosen.
It should be noted that, for impostor pairs, the position of
the earphone against the ear canal for two individuals would
always be different, and, hence, along with between-person
variability, variability due to different earphone positions was
also implicitly included in the impostor pairs.

For the initial authentication step, to handle intra-class vari-
ations in ear acoustic features arising from different earphone
wearing conditions, we performed triple-enrollment evalua-
tions in addition to the usual single enrollment evaluations.
Under triple-enrollment evaluations, a given test feature was
compared against 3 different enrollment features, and the
maximum of 3 resulting scores was chosen as the final score.
This kind of evaluation helps in handling large intra-class
variability [17].
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TABLE III: Performance (EER %) of the audible and inaudible
probe signals in the continuous authentication step for the 2
evaluation systems.

System 1
(Norm)

System 2
(Norm + LDA)

P1:Audible 0.95 0.28
P2:Inaudible <0.01 <0.01

TABLE IV: Performance (EER %) of audible and inaudible
probe signals in initial authentication step for the 2 evaluation
systems. Evaluations were done under both single and triple-
enrollment conditions.

System 1
(Norm)

System 2
(Norm + LDA)

1-enr 3-enr 1-enr 3-enr
P1:Audible 6.76 2.27 4.47 1.44
P2:Inaudible 11.96 3.95 11.00 4.72

C. Experimental results
1) For continuous authentication, inaudible signals per-

formed best: Table III shows the performance of the audible
and inaudible probe signals in the continuous authentication
step for the two evaluation systems. Both of the probe-signal
types performed well, with inaudible signals having the lowest
EER. This shows that use of inaudible signals offers potential
for silent continuous authentication along with high accuracy
as compared to the conventional use of audible signals alone.

2) For initial authentication, audible signals performed
best: Table IV shows the performance of the audible and
inaudible probe signals in the initial authentication step for
the two evaluation systems. Evaluations were done under
both single and triple-enrollment conditions. It can be seen
that triple-enrollment evaluation resulted in better performance
for both the probe-signal types than did single-enrollment
evaluation. Also, audible signals (P1) with System 2 settings
offered the best performance, with an EER of 1.44%. Hence,
they should be used for initial authentication in order to obtain
high accuracy.

3) Different earphone-wearing conditions led to higher
variability in the captured ear acoustic space of an individual:
Tables III and IV show that for each of the two probe-
signal types, performance in the initial authentication step was
worse than that in the continuous authentication step. Also, for
inaudible probe signals, degradation was much higher than
that for audible signals. These results agree with our earlier
observations that different earphone-wearing conditions result
in greater within-person variability in captured ear acoustic
features. Also, the variability is much larger for inaudible
frequencies and, hence, authentication performance worsens,
irrespective of the type of probe signals.

V. SUMMARY AND FUTURE WORK

We have described a biometric authentication system using
inaudible signals for capturing the acoustic characteristics of
ears and offering the key feature of silent continuous authenti-

cation. Such authentication is not affected by background audi-
ble noise, such as speech or music. Hence, we can authenticate
a person while he/she is listening to music or talking to some-
one. However, initial authentication is challenging because of
the variability introduced by repositioning of earphones against
ear canals. Also, inaudible signals are more sensitive than
audible signals to such repositioning. In response to this, we
have proposed a hybrid system using audible probe signals
for initial authentication alone, followed by silent continuous
authentication using inaudible probe signals.

We intend in future work to focus on improving the per-
formance of initial authentication and to include experiments
with a larger amount of training data, detailed analyses of
the nature of ear acoustic features captured by audible and
inaudible probe signals in different recording sessions, and
extraction of robust ear acoustic features by removing factors
that depend on earphone-wearing conditions.
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