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ABSTRACT

In Monte Carlo-based Bayesian inference, it is important to
generate samples from a target distribution, which are then
used, e.g., to compute expectations with respect to the target
distribution. Quite often, the target distribution is the pos-
terior of parameters of interest, and drawing samples from
it can be exceedingly difficult. Monte Carlo-based methods,
like adaptive importance sampling (AIS), is built on the im-
portance sampling principle to approximate a target distribu-
tion using a set of samples and their corresponding weights.
Variational inference (VI) attempts to approximate the pos-
terior by minimizing the Kullback-Leibler divergence (KLD)
between the posterior and a set of simpler parametric distri-
butions. While AIS often performs well, it struggles to ap-
proximate multimodal distributions and suffers when applied
to high dimensional problems. By contrast, VI is fast and
scales well with the dimension, but typically underestimates
the variance of the target distribution. In this paper, we com-
bine both methods to overcome their individual drawbacks
and create an efficient and robust novel technique for drawing
better samples from a target distribution. Our contribution is
two-fold. First, we show how to do a smart initialization of
AIS using VI. Second, we propose a method for adapting the
parameters of the proposal distributions of the AIS, where the
adaptation depends on the performance of the VI step. Com-
puter simulations reveal that the new method improves the
performance of the individual methods and shows promise to
be applied to challenging scenarios.

Index Terms— Adaptive importance sampling, Markov
chain Monte Carlo, variational inference, Bayesian inference

1. INTRODUCTION

In a Bayesian setting, all relevant information about the pa-
rameters of interest is contained in the posterior distribution.
In practice, the posterior distribution is used to find expecta-
tions of interest, which is usually difficult, if not impossible,
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to express in closed form. Thus, a possible alternative con-
sists of approximating such expectations through numerical
methods, and in particular, Monte Carlo-based methods.

One of the most popular Monte Carlo sampling methods
are the Markov chain Monte Carlo (MCMC) methods, which
construct a Markov chain whose stationary distribution is the
posterior [1]. Once the Markov chain converges, the drawn
samples by the chain are considered to come from the target
distribution. This allows for sample-based approximation of
the posterior. However, not all the samples are used towards
the approximation, which may lead to a considerable compu-
tational inefficiency.

Recently, adaptive importance sampling (AIS) has emerged
as a viable alternative to MCMC. It builds upon the principle
of importance sampling, where a set of proposal functions
are iteratively updated and are used to generate samples with
assigned weights. In contrast to MCMC, all the samples and
corresponding weights are used to form an approximation
of the posterior. There is also no need for a burn-in period
when implementing AIS. However, AIS suffers when the
posterior is characterized as multimodal and/or the prob-
lem is of high dimensionality. There have been attempts
to overcome some of these challenges through various AIS
implementations, which rely on different weight calculations
and proposal updates such as AMIS (Adaptive Multiple Im-
portance Sampling) [2], DM-PMC (Deterministic Mixture
Population Monte Carlo) [3], M-PMC (Mixture Population
Monte Carlo) [4], and others [5].

Variational inference (VI) is another popular method, pri-
marily used in the machine learning community, for approx-
imating posteriors. Contrary to Monte Carlo methods, which
use sampling, VI is based on optimization to approximate the
posterior [6], [7]. VI aims to minimize the Kullback-Leibler
divergence (KLD) between the posterior and a family of prob-
ability distributions [8]. However, it can often be hard to find
closed form expressions for updating the equations involved
in the algorithm [9]. In addition, since the final variational
distributions come from a known family, they may not fully
resemble the targeted posterior.

In this paper, we propose a novel approach to AIS, where
VI is used to obtain a coarse estimate of the posterior, which is
then used to initialize AIS. This allows AIS to take advantage
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of the estimate supplied by the VI algorithm and to provide
a more accurate estimate of the posterior that will also more
closely resemble it. We also propose a variance adaptation
technique for the proposal distributions that is robust to the
performance of VI. Using AIS alone we run into the afore-
mentioned problem of many modes, while using VI alone,
the variational approximation may not closely resemble the
true posterior. By combining both methods, we take advan-
tage of the positive attributes of both methodologies. Com-
puter simulations show that the proposed method results in an
approximation that more closely resembles the target distri-
bution than the methods can achieve on their own.

The remainder of the paper is structured as follows. In
Section 2, we review the theory of AIS and VI. In Section 3,
we discuss both the proposed method and the variance adap-
tation. In the following section, we present results of a series
of experiments that compare the performance of the proposed
method with some state-of-the-art methods. In Section 5, we
provide concluding remarks and discuss future work.

2. REVIEW

2.1. Preliminaries

We consider problems where the challenge is to estimate
some target distribution π(x), where x ∈ IRd. In the Bayesian
framework, this target distribution typically represents a pos-
terior distribution of the parameters of interest. Both AIS
and VI can give us an approximation of this target. The
approximation via AIS is provided by a series of samples
and their corresponding weights. On the other hand, the ap-
proximation given through VI is provided through a series of
parameterized distributions from known families.

2.2. Adaptive Importance Sampling

AIS uses the principle of importance sampling to iteratively
improve the proposal distribution, allowing for a better ap-
proximation of the target density, π(x). At iteration 0, we
draw M samples from a proposal distribution, q0(x), and
form an approximation of the target

π̂0(x) =
M∑
m=1

w
(m)
0 δ

(
x

(m)
0

)
, (1)

where w(m)
0 =

w̄
(m)
0∑M

j=1 w̄
(j)
0

represents the normalized weight

of the mth generated sample, x(m)
0 , with w̄(m)

0 =
π
(
x
(m)
0

)
q0
(
x
(m)
0

) .

The random measure χ0 =
{
x

(m)
0 , w

(m)
0

}M
m=1

can be used

to construct a better proposal, q1(x) [10]. Then, M samples
are drawn from q1(x) and their weights are properly calcu-
lated. The samples and weights from these first two itera-
tions can be combined to obtain a better approximation of

the target [11]. Moreover, this new approximation is used
to construct an even better proposal distribution for the next
iteration, q2(x). The procedure continues iteratively, and at
iteration i, the proposal distribution qi(x) is adapted using the
past random measures.

One popular implementation of the AIS methodology is
the population Monte Carlo (PMC) algorithm [12]. In PMC,
a set of proposals is used to generate samples, i.e., x(m)

i ∼
q

(m)
i

(
x|µ(m)

i ,Σ
(m)
i

)
for m = 1, · · · ,M and i = 1, · · · , I .

The proposal distributions are updated by adapting their loca-
tion parameters µ(m)

i , while keeping Σ
(m)
i fixed, i.e., Σ

(m)
i =

Σ, ∀i,m. The adaptation is performed using a resampling
method [3]. Here, for simplicity, we use multinomial resam-
pling. The PMC implementation is summarized in Algorithm
1.

Algorithm 1 PMC

Select the adaptive parameters µ(m)
1 , m = 1, · · · ,M

Select the static parameter Σ
1: for i = 1, · · · , I do

2: Generate samples:
draw x

(m)
i ∼ q(x(m)

i |µ(m)
i ,Σ) m = 1, · · · ,M

3: Update the weights:

w̄
(m)
i =

π(x
(m)
i )

q(x
(m)
i |µ(m)

i ,Σ)
m = 1, · · · ,M

4: Normalize the weights:
w

(m)
i = w̄(m)∑M

j=1 w̄
(j) m = 1, · · · ,M

5: Perform resampling using χi =
{
x

(m)
i , w

(m)
i

}
to select µ(m)

i+1 , m = 1, · · · ,M

6: end for

7: Recalculate the weights

8: ρ
(m)
i =

w̄
(m)
i

I∑
i=1

M∑
m=1

w̄
(m)
i

, m = 1, · · · ,M, i = 1, · · · , I

9: π̂(x) =
I∑
i=1

M∑
m=1

ρ
(m)
i δ(x

(m)
i )

2.3. Variational Inference

Let us define the set of tractable distributions as D. The goal
of VI is to select an element, q(x) ∈ D, which provides the
best approximation to the target, π(x). This is done by re-
casting the optimization problem that selects the distribution
which minimizes its KLD with the target [13]:

q∗(x) = arg max
q(x)∈D

{KLD (q(x)||π(x))} . (2)
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Often the mean-field approximation methodology is fol-
lowed [9], which assumes that q∗(x) can be factored as

q(x) =
K∏
k=1

q∗k(xk). (3)

This allows for the optimization of K functions individually
instead of just one, which eases computation. It can be shown
that the optimal variational distribution takes the form

q∗k(xk) ∝ exp(E−q∗k(log(π(x)))), (4)

where the expectation is taken with respect to the variational
distributions, not including q∗k(x). Solving for the variational
distributions as above will result in a series of equations that
allow for the updates of the parameters of the distributions,
assuming the distributions come from a known family. The
algorithm runs either for a fixed number of iterations or un-
til the difference between consecutive updates drops below a
threshold. The standard VI implementation is summarized in
Algorithm 2.

Algorithm 2 Standard VI Algorithm
Randomly initialize the parameters of the distributions
qk(xk) k = 1, · · · ,K

1: for i = 1, · · · , I do

2: for k = 1, · · · ,K do

3: Optimize qk(xk) fixing q−k(x−k)

4: end for

5: end for

6: π̂(x) =
K∏
k=1

qk(xk)

3. PROPOSED METHOD

In our proposed method, we aim to combine the strengths of
both methods. Taking advantage of the low computational
complexity of VI, we can have a quick and efficient search of
high probability state spaces. This serves to circumvent the
problem of initialization of AIS algorithms. Poor initializa-
tion will affect proper exploration by the proposals and will
lead to poor results. The initialization becomes increasingly
important when many modes are present in order to avoid
locking into few modes.

More precisely, we propose to run the VI for a fixed num-
ber of iterations. The modes of the variational distributions

{λ1, · · · , λK} are then used to initialize the location param-
eters for AIS. For instance, using M proposals after estimat-
ing N modes of the target, we can set the adaptive location
paramters as µ1:bM/Kc = λ1, · · · , µM−bM/Kc:M = λK ,
where b·c represents the floor function. In this manner an
equal number of samples are generated around each of the
discovered modes.

A key part of the proposed method is that the AIS step
adapts depending on the performance of the VI step. For ex-
ample, if the proposals are Gaussians and the static parameter
Σ represents a fixed covariance matrix for the M proposals,
we would like that if the VI step did well, we stay within those
modes, and therefore we use small covariance matrices that
do not encourage far reaching exploration. However, if the VI
step did not perform well, we should like that the initial pro-
posals do explore far outside the VI initialization and the se-
lection of Σ encourages that exploration. We account for this
by selecting a set of possible static parameters {Σ1, · · · ,ΣL}
that influence the exploration of the space. Running L par-
allel AIS algorithms for I iterations each with a different Σl
and the parameters passed from the VI step, the Σl that pro-
duces the highest average likelihood is chosen to run for a full
number of iterations. That is, we choose the static parameters
as follows:

Σ = arg max
Σl, l∈{1,··· ,L}

{
1

IM

I∑
i=1

M∑
m=1

π(x
(m)
i )

}
. (5)

This adaptation step, using a sufficiently diverse set of values
{Σ1, · · · ,ΣL}, will ensure proper exploration of the space.
The newly proposed method is outlined as Algorithm 3.

Algorithm 3 Proposed Method
1: Select the possible static parameters {Σ1, · · · ,ΣL} for

testing
2: Run the VI algorithm to obtain λ1, · · · , λK

3: for l = 1, · · · , L do

4: Run AIS with Σl as the static parameter of the pro-
posals, and adaptive parameters set as

µ1:bM/Kc = λ1, · · · , µM−bM/Kc:M = λK

5: end for

6: Choose Σ, the most favorable static parameter, according
to equation (5)

7: Continue with the AIS which used the optimal static pa-
rameter for the remaining iterations.
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4. NUMERICAL RESULTS

4.1. The problem

Consider N samples drawn from a mixture of K Gaussians.
Specifically let

x = {µ1, · · · , µK} , (6)

yn|x ∼
K∑
k=1

1

K
N (yn|µk,ΣX), n = 1, · · · , N, (7)

where µk, yn ∈ IRd for ∀n, k, yn represents an observed sam-
ple, ΣX is a known covariance matrix, and Id is the d × d
identity matrix. The goal is to estimate x, the set of means.
The posterior can be written as

f(x|Y ) =

N∏
n=1

K∑
k=1

1
KN (yn|µk,ΣX) p(x)

f(Y)
, (8)

where the prior placed on the means is p(x) =
K∏
k=1

N (µ0,Σ0),

and Y = {y1, . . . , yN}. Due to the complexity of the model,
it is not trivial to estimate x. We solve the problem using
standard AIS, standard VI, and the proposed method.

4.2. Variational Inference Updates

Standard AIS is straightforward to implement but more work
is required to obtain the variational inference implementation.
To ease the derivation, we add a latent variable, zn ∈ IRK , a
1-hot vector with a 1 in the kth position if yn comes from the
mixand k. The joint distribution of all the variables is then

f(x,Z,Y) =
N∏
n=1

K∏
k=1

1

K
N (yn|µk,ΣX)znk p(x)p(Z), (9)

where znk
is the kth element of zn, Z = {z1, · · · , zN}, and

p(Z) =
N∏
n=1

K∏
k=1

( 1
K )znk . Under the Mean Field approxima-

tion, the variational distributions can be factored as q (x,Z) =

q(Z)
∏K
k=1 q(µk). It can be shown that

q(µk) = N (λk,Σk) , (10)

Σk =

(
Σ−1

0 +
n∑
n=1

E [znk
] Σ−1

X

)−1

, (11)

λk = Σk

(
Σ−1
X

N∑
n=1

ynE [znk
] + Σ−1

0 µ0

)
, (12)

and

q(Z) =
∏N

n=1

∏K

k=1
Ω
znk
nk , (13)

where for normalization purposes,

Ωnk
=

ωnk∑
j ωnj

, (14)

and

logωnk
= −1

2

(
yTnΣ−1

X yn − 2yTnΣ−1
X E[µk] (15)

+ tr
(
Σ−1
X var(µk) + E[µk]TΣ−1

X E[µk]
))

. (16)

Next we present the results of three experiments.

4.3. Experiment 1

Let the mean components of the mixture be

x = [−40,−30,−20,−10, 0, 10, 20, 30, 40]>

and N = 500 data points. PMC and VI are both run for
IPMC = IV I = 250 iterations while the proposed method,
called VI-PMC in Table 1, uses 125 iterations for each step.
For the standalone PMC, we generated M = 250 samples,
and set the variance of the proposal densities to be 10. For
the PMC part of the proposed method, we set M = 250 and
the variance of the proposals comes from σ2 ∈ {9/10, 9}.
We used Gaussian proposals and the prior

∏K
k=1N (0, 50).

In Table 1, the MSE was obtained by averaging over 100 re-
alizations for each method. The MSEs were obtained for var-
ious values of ΣX = σ2

X , the variance of the data. The results
show that the proposed method had the best performance.

Table 1. Experiment 1 Results
Method σ2

X = 0.5 σ2
X = 1 σ2

X = 4 σ2
X = 9

PMC 30.68 34.11 27.81 41.92
VI 149.6 101.38 61.32 0.6628
VI-PMC 6.6 4.26 5.0054 0.1426

4.4. Experiment 2

In this experiment, we considered a multivariate case, where
the mean components of the mixture were µ1 = [−40;−40],
µ2 = [−30;−30], µ3 = [−20;−20], µ4 = [−10;−10],
µ5 = [0; 0], µ6 = [10; 10], µ7 = [20; 20], µ8 = [30; 30],
µ9 = [40; 40]. All the simulation parameters were the same
as before except that the variance of the proposals for the stan-
dalone PMC were 10I2. For the PMC part of the proposed
method, the variance of the proposals were Σ = σ2I , where
σ2 ∈ {9/10, 9}. The results are presented in Table 2. Again,
the proposed method had the best performance.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1649



Table 2. Experiment 2 Results
Method σ2

X = 0.5 σ2
X = 1 σ2

X = 4 σ2
X = 9

PMC 259.68 191.46 68.88 32.71
VI 316.17 295.26 126.92 56.75
VI-PMC 43.30 17.75 43.91 21.78

4.5. Experiment 3

In the third experiment, we considered a 20-dimensional mul-
tivariate Gaussian, where the mean components of the mix-
ture were µ1 = −40 × 120, µ2 = 0 × 120, µ3 = 40 × 120,
where 120 represents the 20−dimensional column vector of
all ones. All the simulation parameters were the same as be-
fore except that the variance of the proposals for the stan-
dalone PMC were 10I20. For the PMC part of the proposed
method, the variance of the proposals were Σ = σ2I where
σ2 ∈ {9/10, 9}.

The results of this experiment are shown in Table 3. In
this experiment, the proposed method outperformed the PMC
and VI the most.

Table 3. Experiment 3 Results
Method σ2

X = 0.5 σ2
X = 1 σ2

X = 4 σ2
X = 9

PMC 6020.9 6177.0 5590.7 4664.9
VI 4024.1 3759.7 3610.5 3479.1
VI-PMC 173.6 133.84 134.1 146.5

In summary, we see from the above that the combination
of both methods always produces better results. We can at-
tribute this to the VI-step, which hones in close to the proper
areas of high probability where samples should be generated.
The AIS-step is then able to produce a fine grained approx-
imation of the target by properly exploring regions of high
probability, in contrast to a random initialization where the
AIS may never be in position to explore them.

5. CONCLUSION

In this paper we proposed a new strategy of combining vari-
ational inference (VI) and adaptive importance sampling
(AIS). The method applies AIS which is initialized via VI.
We also proposed an adaptation step that allows the method to
be robust to the performance of the VI initialization step. Nu-
merical results show that the proposed method outperforms
the respective individual implementations of AIS via PMC
and VI. The improvement in performance is more dramatic
as the number of modes increases and the dimension of the
target distribution becomes higher.
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