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Abstract—This work presents a spectral image fusion approach
from compressive projections based on the linear mixture
model that exploits the endmember matrix low dimensional
structure. The formulated inverse problem includes a total
variation term over the abundance matrix to promote smooth-
ness, but also a low rank term over the endmember matrix
to promote the low rank structure. The optimization problem
is solved using an alternating direction method of multipliers
(ADMM) approach to independently estimate the abundance
and endmember matrices. Simulations show that the fusion
problem can be effectively solved from compressive projections,
and the inclusion of the low rank regularization increases the
reconstruction quality.

1. Introduction

Spectral images contain a portion of the electromag-
netic spectrum along many narrow spectral bands. This
information allows to better identify objects based on their
reflectance spectra and to find detailed object properties [1].
Common spectral imaging sensors are able to capture either
a high spatial resolution, known as multispectral images
(MS), or a high spectral resolution, known as hyperspectral
images (HS), but not both at the same time [2]. Then,
a fusion methods can be used to obtain a high spatio-
spectral resolution scene by fusing the MS and HS im-
ages [3]. Recently, the compressive spectral imaging (CSI)
framework has allowed to reduce the number of sampled
pixels by encoding and dispersing the spectral information
along the spatial domain of a scene [4]. Hence, this work
proposes to solve the fusion inverse problem to obtain a
high resolution scene from compressed projections of the
MS and HS images. The proposed formulation is based
on the linear mixture model of the spectral scene, simil-
iar to the approach presented in [2], with the difference
that we use compressed measurements instead of the full
MS and HS images. Further, we aim at estimating both,
the abundance and the endmember matrices. To do that,
the proposed inverse problem includes traditional specific
characteristics on the abundance matrix, as the smoothness
promoted by a total variation (TV) regularizer, but also as
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a new contribution, it promotes a low rank structure on
the endmember matrix, which is regularized with a nuclear
norm term. The inverse spectral fusion problem formulation
results in minimizing an objective function which includes
two fidelity data terms, a TV regularization, and a low-rank
penalty. In order to independently estimate the endmember
and abundance matrices, we employ an alternating ADMM
approach. Simulations over two well-known databases were
carried out to measure the performance of the proposed
method in terms of the normalized mean squared error,
the spectral angle mapper, and the peak signal to noise
ratio metrics. Results show that the high spatio-spectral
resolution scene can be properly estimated from compressed
projections using the proposed regularizations.

2. Compressive Fusion Observation Model

Let Z € RL»*"m denote a high spatio-spectral reso-
lution (HR) scene with L; spectral bands and n,, spatial
pixels. Then, the observation model of the compressive
fusion problem can be written

Y, = H,ZBM + N, (1)
Y = H,RZ + Ny,. (2)

In (1) the matrix B € R"m*"m is a spatial convolution
operator, M € R"m*" represents a uniform subsampling
operator, and so, the HS scene ZHS ¢ RLnxnn — ZBM
is assumed to be a blurred and downsampled version of
the target Z by a factor of dp, such that, the number of
spatial pixels corresponds to nj, = n,,/d3; Hy, € Rm»*Ln
denotes the sensing matrix with m;, < L;, used to obtain the
HS compressed measurements Y; € R™»*" and Nj, €
R™»*"h is a Gaussian noise matrix. Similarly, in (2) R €
REmxLn contains the spectral response of the sensor, and so,
the MS scene ZMS ¢ REm>x"m = RZ is assumed to be a
spectrally degraded version of the target Z by a factor of d,,,,
such that, the number of spectral bands are L,, = Ly, /dm;
H,, € Rmm>*Lm denotes the sensing matrix with m,, <
L,, used to obtain the MS compressed measurements Y,,, €
R™MmX%m and N,,, € R™m>™m js a Gaussian noise matrix.
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Because spectral images exhibit high spectral correla-
tions, it is assumed that the HR scene lies in a low dimen-
sional subspace [5]. Hence, it can be written as the product
of two matrices, Z = EX, known as the linear mixture
model [6], where E € RE»** is named the endmember
matrix containing k¥ < Lj endmembers that span the matrix
Z, and X € R¥*"m is named the abundance matrix which
contains the proportion of each endmember present at each
spatial pixel [7]. Thus, the observation model using the
linear mixture becomes,

Y, = H,EXBM + N,,, 3)
Ym = HmREX + Nm- (4)

Note, in Egs. (3) and (4) that the full HR scene is replaced
by the product of the endmember and abundance matrices.

3. Compressive Fusion Inverse Problem For-
mulation

This section introduces an optimization problem to es-
timate the endmember and abundance matrices from the
compressed measurements in Eqs. (3) and (4) instead of
recovering the high resolution scene. To do that, we seek to
minimize an objective function which includes two fidelity
data terms corresponding to the compressed MS and HS
observations, respectively. Specifically, the matrices E and
X can be estimated as

A 1
E, X =argmin §HH;1EXBM — YhH%-‘r (%)
E,X

A
§||HmREX - Ym”%7

where A > 0 is a parameter to control the relative weight

of the term. Since the inverse problem in (5) is ill-posed

[8], further regularizers and constraints over the abundance

and endmember matrices are required. Traditional regular-

izations over the abundance matrix include:

o A Total Variation (TV) regularizer to promote smooth
transitions, 7¢1(X) = 7||XDyll1 + 7||XDpl[1, where
D, € R"*"m and D), € R"™*"m correspond to
the vertical and horizontal discrete difference operators,
respectively, with 7 > 0 [9], and the ¢;-norm is defined
as the sum of the absolute values of the matrix. Thus, for a
matrix O € R™", [|Oly = >2;_, 77, |0y ;|. Different
regularizations for hyperspectral images as the structure
tensor regularization in [10] could be also used.

« A non-negativity constraint to indicate that the fractional
abundances can not be negative, modeled as X > 0 [11].

« A sum-to-one constraint to consider the entire composi-
tion of a mixed pixel, modeled as 1} X =11 [12].

On the other hand, traditional constraints over the endmem-

ber matrix impose that each spectral signature represents the

reflectances of different materials that belong to the interval

[0,1]. Thus, E € [0, 1]F»>* [11], [13].

The contribution of this work is the imposition of an
additional regularization over the endmember matrix to pro-
mote a low rank structure. This comes from the assumption

that the high resolution scene is low rank since there exist
few different endmembers which are enough to represent
the complete data [6]. Then, we aim at minimizing the rank
of the endmember matrix by using the traditional nuclear
norm relaxation as y||E|., with v > 0 [14]. Including
the TV and low-rank regularizations together with the non-
negativity, the sum-to-one, and the reflectance constraints,
the compressive fusion inverse problem based on the linear
mixture model in (5) can be rewritten as

. 1
E,X :argmin§ |H,EXBM — YhH%‘—l— (6)
E.X

A

SIHLREX = Y, |7+

7| XDy [y + 7| XDy 1 + [ E].

X>0; 1yX=1); 0<E<L

3

subject to

4. TV and Low-Rank based Compressive Fu-
sion Numerical Algorithm

The problem in (6) is nonconvex since it presents a
quadratic formulation over variables E and X. To solve this
nonconvex inverse problem we follow a block coordinate
descent method [15], [16] which allows to alternate the
optimization variables in order to solve independently for
each of them, assuming that the other variable is fixed. Each
independent solving algorithm follows an ADMM approach.
The general scheme of the proposed numerical algorithm is
summarized in Algorithm 1. Details about the optimization
subproblems are presented in the subsections bellow.

Algorithm 1 Compressive image fusion using TV and Low
Rank Regularizations

1: procedure CIF(H,,H,,, MR, Y},Y,,,,B,D,, Dy,
Iter)

w <+ 0
EY ~U[0,1]
while w < Iter do

2

3 > Random initialization
4.

5: Xw+1l + Solve (6) with E fixed.
6

7

8

> Algorithm 2
Ev+t! « Solve (6) with X fixed. > Algorithm 3
w—w+1
end while
9: return X1 and Elter

10: end procedure

4.1. Abundance Matrix Estimation using ADMM

Assuming that the endmember matrix (E) is fixed, the
inverse problem to estimate the abundance matrix (X) cor-
responds to,

X = argmin | H,EXBM — Yh”%:-i- )
XEkanm
AMH, REX - Y, |3+

27(|XDy 1 + 27[[XDp 1 + ¢2(X),
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where ¢o(-) is an indicator function that accounts for the
sum-to-one constraint

[0, XepP
with P = {P|P > 0,1]P = 1! }. Observe that, the non-

negative and sum-to-one constraints in (6) were replaced by
this indicator function which implies that the cost function

can take values in the extended real number line R = R U

{oo}.
The first step to solve problem in (7) is to include the
auxiliary splitting variables which yields to,

X7 vV, =argmin |HLEVM — Yh”%-l- )]

X,V;
MNH,,REV, — Y, |2+
27(|Vall1 + 27| Vall1 + ¢2(V5),
subject to XB =V;; X =V, XD, =Vjy;
XD), =V, X=Vs.

The augmented Lagrangian associated with (9) corresponds
to

L(X,V:, D)) =argmin [HLEVIM = Y|3+  (10)

X,V;,D;
A|H,,REV; — Y, |3+
p||XB — Vi — Dy |2+

plIX = Vo — Do[7+
27| V3|1 + p| XD, — V3 — D7+
27(|Valls + p| XDy, — Vi — Dyl[3+
$2(Vs) + pl|X = V5 — D57,

with p > 0. Minimization over each variable X,V;, and

D; in (10) leads to the closed solutions summarized in
Algorithm 2 from line 6 to line 16. In line 7, o denotes

the Hadamard product, and M is an equivalent matrix to

the subsampling matrix M. In line 9 and line 10 soft.(-)
indicates the soft thresholding operator such that for a

structure o € R",
softe (0) = { g Z ;g fori=1. (11)

In line 11 SimplexProjection(-) indicates the Euclidean pro-
jection on P.

4.2. Endmember Matrix Estimation using ADMM

The minimization problem to estimate the endmember
matrix E for a fixed X corresponds to,

E =argmin ||H,EXBM — Y, |2+ (12)
E

AH,,REX — Ym”% + 27[|E[[« + 1 (E),
where 1 (-) is an indicator function that accounts for the
reflectance constraint

nE={ 1 B8 ie-(@u=asi. a3

Algorithm 2 Abundance Estimation with ADMM approach

1: procedure ABUNDANCEADMM(H,;,,H,,,, M,R, Y},
Y,.,.B,D,, Dy, E¥ A\ 7, p, IterX)

2: u<+0

3: Vi+0

4: D!+ 0

5: while © < IterX do
6.

X+l [(Vi+DY)BT +(VY+DY)+(V ;
DY)DI+(Vi +D})D} +(Vi+D)][BB"+D,D;

D, D} + 217!
7: vith  «—  [(HEY)T(HREY) + pI7!
[(HAE)TY,MT + p(X""'B — Df)] o M +

[(X*+'B — DY) o (1 M)

8: vitt « \(H,,REY)"(H,RE") + pI|~!
AH,,RE)TY,, + p(Xv+ — DY)]

9: VT« softy, ,,(X*T1D, — DY)

10: Vit « softy, ,(X*F'1D), — DY)

11: Vit < SimplexProjection(X“*! — DY)

12: D“+1 «— Dy +Vutt _xutlp

13: D“+1 — D“ V“+1 Xutl

14: D“+1 — D“ + V“+1 XuHp,

15: D“+1 — D“ + V“+1 Xutlp,

16: D“+1 — Du V“+1 — Xutl

17: u+—u+1

18: end while

19: return X1terX

20: end procedure

The first step to solve problem in (12) is to include the
auxiliary splitting variables which yields to,

E,W; =argmin  |[W,XBM — Y,,[%+ (14)

W
A[WoX = Yo |54
29[| Wil +11(Wy),
subject to H,E =W;; H,,RE = Wy;
E=W;3 E=W,

Then, the augmented Lagrangian associated with (14) cor-
responds to

L(E,W;,G;) = argmin
E,W,,G;
N[W2X = Yo |7+ 27[[Wsl|+
Y1 (Wy) + x| HLE — Wy — Gq |5+
X|H.RE — W, — Gy %+
XIE — W5 — Ga||3+
X||E = Wy — Gyl|7,

Wi XBM - Y, |3+ (15

with x > 0. Minimization over each variable E, W, and
G, in (15) leads to the closed solutions summarized in
Algorithm 3 from line 6 to line 15. There, in line 9 U
and V are the left and right eigenvectors associated with
the eigenvalues in o, and in line 11 the min max operator
approximates the projection onto Q.
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Algorithm 3 Endmember Estimation with ADMM approach

1: procedure ENDMEMBER-
ADMM(th Hm7 M7 R7 th Yma 5 B7 Xw+1a Aa
7. X, IterE)

2: v+ 0

3: W;) ~—0

4: G;} +~0

5: while v < IterE do

6: E'*! « [HTH, + (H,R)"(H,,R) + 2] !
[H} (W} +GY) +(H,,R)T (W5 +G5)+ (W5 +G3)+
(Wi +Gi

7: Wit [Y,(XHBM)T + x(H,E"H! —
GY)] [(X* 1 BM)(XUHBM)T + 1]~

8: WEHE o INY, (X7 + x(H,,REV! —
GHIAXH) (XU 1)1

9: [U,0,V] + svd(E*T! — G3") > Singular
Value Decomposition

10: Wi Usofty, /y (0) VT

11: Wit < min(max(0, E — Gy4),1)

12: GVt Gy + Wit —H,EVH

13: Gyl Gy + Wit — H,,REV!

14: GiT « Gy + Wit _Ev!

15: Git' « Gy + Wit — EvH!

16: vé—v+1

17: end while

18:  return EIter

19: end procedure

5. Results

The evaluation of the proposed compressive fusion using

TV and low rank regularizations was realized using:

« the Jasper database F1 taken from [17] with L, = 198
spectral bands, n,, = 10000 spatial pixels, and k = 4
endmembers.

o a section of the Urban database F2 taken from [17] with
L; = 162 spectral bands, n,, = 16384 spatial pixels,
k = 6 endmembers.

In both cases, the HS scene is a blur downsampled version

by a factor dj, = 4 and the MS scene is a spectrally degraded

version by a factor d,, = 2. The entries of the matrices

H; and H,, were generated using a Bernoulli distribution

modelling different optical filters. For F1 there were ac-
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Figure 1. Top: Jasper F'1 high spatio-spectral resolution scene with k = 4
known endmembers and their abundances. Bottom: Urban F2 high spatio-
spectral resolution scene with & = 6 known endmembers and their
abundances.

databases. Tables 1 and 2 show the average of the PSNR,
SAM, NMSEg (for endmembers), NMSEx (for abun-
dances) metrics in noisy scenarios with 10, 20, 30, and
40 [dB] of SNR to compare the proposed joint TV and
Low Rank compressive fusion approach denoted as TL, with
respect to the compressive TV approach for the F1 and
F2 databases, respectively. Note that the proposed approach
exhibits a better estimation quality performance in exchange
of a higher running time.

TABLE 1. METRICS COMPARISON BETWEEN THE COMPRESSIVE TV
AND THE JOINT TV-LOW RANK COMPRESSIVE APPROACHES F1

Metric \ SNR Noise | 10 [dB] | 20 [dB] | 30 [dB] | 40 [dB]
Spatial PSNR TV | 12.9699 | 14.8010 | 17.0252 | 26.0860
TL | 17.4053| 23.9369| 27.8520| 28.8599
Spectral PSNR TV | 10.8878 | 13.1913 | 15.5043 | 25.1604
TL | 18.2326| 24.4099| 26.9205| 27.4579
SAM TV | 34.1871 | 27.8023 | 20.3515 | 9.6297
TL | 18.8465| 8.5610 | 5.0913 | 4.7947
NMSEg TV | 2.7956 1.9883 —5.6778 —3.1860
TL | —0.8339] —1.1881| —2.3914 | —2.4666
NMSEx TV | —1.6784 | 1.8091 0.2546 3.6186
TL | —2.2642| —3.5914] —1.8835 —2.5434
Time [s] TV | 6.6907 | 6.6542 | 6.6175 | 6.6161
TL | 36.6490 | 35.8204 | 35.1335 | 35.0655

TABLE 2. METRICS COMPARISON BETWEEN THE COMPRESSIVE TV
AND THE JOINT TV-LOW RANK COMPRESSIVE APPROACHES F2

quired my, = 66 shots of the HS scene, and m,,, = 33 shots Metric \ SNR Noise | 10 [dB] | 20 [dB] [ 30 [dB] | 40 [dB]
of the MS scene; for F2 there were acquired m; = 54 : TV | 14.0104 | 16.7830 | 20.2627 | 24.9318
Spatial PSNR | 1y | 16 4150| 22.3619| 31.4102| 35.7441
shots of the HS scene, and n,,, = 27 shots of the MS scene : : : :
hich t the 33% of the dat roximately. Wi Spectral PSNR TV | 12.6185 | 16.6203 | 18.8364 | 21.0864
which represent the 557 ot the data, approximately. we TL | 15.1395| 20.4813| 26.5066| 28.3037
use the peak signal to noise ratio (PSNR) to measure the SAM TV | 35.0039 | 27.7122 | 16.7771 | 9.5743
visual quality of the reconstructions, the normalized mean TL | 24.3231| 10.2250| 4.5018 | 3.8296
square error (NMSE), and the spectral angle mapper (SAM) NMSEg, TV | 7.3850 | 0.7769 | —5.7855 —6.0292
. . . TL | 7.0381 | 2.6618 | 1.4712 | —1.8018
metrics to measure the quality of the unmixing results. The v
. NMSEx 1.6914 4.1353 3.5939 4.9131
resplts are compared to the approach presentc?d in [18] that TL | —0.0246 0.8392 | —0.3481] —0.2788
estimates the endmember and abundance matrices just using Time [s] TV | 15.1232] 14.8689| 14.7896| 14.8538
the TV regularization. me 1s TL | 118.3716| 90.6913 | 124.1256| 122.6113
Figure 1 shows the original and the visualization of
the endmembers and the fractional abundances for both
ISBN 978-90-827970-1-5 © EURASIP 2018 2002
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Figure 2. Visual comparison of some estimated endmembers for databases
Top: F1 and Bottom: F2.

Figure 2 shows a visual comparison of the original end-
members with respect to the estimated using the compressive
joint TV and Low Rank approach for the databases F1
and F2 in a scenario of 40 [db] of noise. Finally, Fig. 3
shows the estimated fractional abundances associated with
the estimated endmembers showed in Fig. 2.
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Figure 3. Visual comparison of the estimated fractional abundances for
databases Top: F'1 and Bottom: F2.

6. Conclusion

This work presented an approach to solve the fu-
sion problem from compressive projections. The proposed
method is based on the well known linear mixture model in
order to estimate the endmember and abundance matrices
instead of the complete image. The inverse problem for-
mulation includes the traditional total variation, nonnega-
tive, and sum-to-one terms. Further, as a contribution the
minimization of the nuclear norm of the endmember matrix
is included in order to promote a low rank structure. The
resulting nonconvex problem was solved under the block
coordinate descent method in which the estimation of the
endmember and abundance matrices were realized indepen-
dently under an ADMM approach. Simulations and results
show that the fusion problem can be effectively solved by

using compressive projections exploiting the linear mixture
model and a low rank regularization.
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