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Abstract—The novel view synthesis for traditional sparse light
field camera arrays generally relies on an accurate depth approx-
imation for a scene. To this end, it is preferable for such camera-
array systems to integrate multiple depth cameras (e.g. Kinect
V2), thereby requiring a precise registration for the integrated
depth sensors. Methods based on special calibration objects have
been proposed to solve the multi-Kinect V2 registration problem
by using the prebuilt geometric relationships of several easily-
detectable common point pairs. However, for registration tasks
incapable of knowing these precise geometric relationships, this
kind of method is prone to fail. To overcome this limitation,
a novel Kinect V2 registration approach in a coarse-to-fine
framework is proposed in this paper. Specifically, both local color
and geometry information is extracted directly from a static scene
to recover a rigid transformation from one Kinect V2 to the
other. Besides, a 3D convolutional neural network (ConvNet), i.e.
3DMatch, is utilized to describe local geometries. Experimental
results show that the proposed Kinect V2 registration method
using both color and deep geometry descriptors outperforms the
other coarse-to-fine baseline approaches.

I. INTRODUCTION

The second version of the Microsoft Kinect (Kinect V2)

is one of the most widespread low-cost Time-of-Flight (ToF)

sensors available in the market [1]. The comparison between

the Kinect V2 and the first generation of Microsoft Kinect

(Kinect V1) is well studied in [2], where the Kinect V2 has a

higher accuracy but a lower precision than the Kinect V1 [3].

A. Motivation

The multi-camera rig illustrated in Fig. 1 (a) is a movable

camera array [4] for capturing dynamic light fields [5]. The

precise calibration of the two Kinect V2 sensors on this rig

is critical to the dense 3D reconstruction of a large-scale and

non-rigid scene [6], which can be further used for the novel

view synthesis in the Free Viewpoint Video (FVV) [7] and

Head-Mounted Display (HMD) [8] systems, together with the

dynamic light fields captured by the sparse RGB camera array

and densely reconstructed by [9]–[14]. Therefore, an auto-

matic Kinect V2 registration method without relying on any

calibration object would be highly desirable for this system,

considering that the positions of the two Kinect V2 cameras

may be changed for different scenes of varying sizes and

the preparation phase of calibration object-based registration

methods may be time-consuming and cumbersome.

B. Related Work

As for solving the registration problem of multiple depth

cameras with using calibration objects, several methods have

been proposed. Afzal et al. propose an RGB-D multi-view

system calibration method, i.e. BAICP+, which combines

(a) A multi-camera system. (b) A static scene.

Figure 1. The two Kinect V2 cameras are fixed on a movable multi-camera
rig. The static scene shown in (b) is used for experiments.

Bundle Adjustment (BA) [15] and Iterative Closest Point (ICP)

[16] into a single minimization framework [17]. The corners

of a checkerboard are detected for the BA part of BAICP+.

Kowalski et al. present a coarse-to-fine solution for the multi-

Kinect V2 calibration problem, where a planar marker is

used for the rough estimation of camera poses, which is later

refined by an ICP algorithm [18]. Soleimani et al. employ

three double-sided checkerboards placed at varying depths for

an automatic calibration process of two opposing Kinect V2

cameras [19]. Córdova-Esparza et al. introduce a calibration

tool for multiple Kinect V2 sensors using a 1D calibration

object, i.e. a wand, which has three collinear points [20].

Regarding the Kinect V2 registration solution without using

calibration objects, Gao et al. propose a coarse-to-fine Kinect

V2 calibration approach using camera and scene constraints

for two Kinect V2 cameras with a large displacement [21].

In this paper, to solve the registration problem of two

Kinect V2 cameras, a novel camera calibration method for

Kinect V2 sensors using local color and geometry information

is proposed. Specifically, an off-the-shelf feature detector is

used for detecting interest points and describing local color

information for them. Afterwards, a ConvNet-based 3D de-

scriptor, 3DMatch [22], is utilized to describe local geometry

information for these interest points. Both color and geometry

descriptors are employed to estimate an initial rough rigid

transformation between two Kinect V2 cameras, which can

then be refined by an optional estimation refinement step if

necessary. Experimental results prove the effectiveness of the

proposed method by comparing it with baseline approaches.

II. METHODOLOGY

A. Preliminary

The two Kinect V2 cameras mounted on the multi-camera

rig are denoted by CA and CB, respectively. Since the intrinsic

parameters and lens distortion of the ToF sensor in a Kinect

V2 can be calibrated in advance or extracted from the fac-

tory calibration by using the Kinect for Windows SDK, the
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Figure 2. A flow chart of the proposed Kinect V2 registration method in the coarse estimation phase.

registration problem of two Kinect V2 cameras is interpreted

as how to calculate a rigid transformation between these two

cameras. Suppose a rigid transformation is expressed as

Ti =

(

Ri ti
0 1

)

∈ SE(3), (1)

where Ri ∈ SO(3) and ti ∈ R3. A coarse-to-fine camera

registration framework [23], [24] is defined as estimating the

rigid transformation from CA to CB via two steps:

T = T2T1. (2)

Here, for the rigid transformation matrix Ti, i ∈ {1, 2} stands

for the case of using a coarse estimation method in Section

II-B and the other case of using an estimation refinement

approach in Section II-C, respectively. The camera coordinate

system of the ToF sensor in a Kinect V2 camera is specified as

the camera space of this Kinect V2. The intrinsic parameters of

CA or CB are represented by the focal lengths f j
x, f j

y and the

principal point
(

cjx, c
j
y

)T
, where j ∈ {a, b}. The lens distortion

coefficients are utilized to eliminate distortions before saving

any pair of registered color and depth images, denoted by Cj

and Dj , both of which are from the camera image plane of

the ToF sensor in a Kinect V2.

B. Coarse Estimation

A marker that can be simultaneously captured by a pair of

Kinect V2 cameras aids establishing reliable corresponding 2D

point pairs on Ca and Cb [18]. One of these corresponding 2D

point pairs is expressed as
(

ua
i ,u

b
i

)

, where u
j
i =

(

u
j
i , v

j
i , 1
)T

,

j ∈ {a, b}. The depth value d
j
i for a 2D point u

j
i is acquired

from its respective depth image Dj , i.e. d
j
i = Dj

(

v
j
i , u

j
i

)

.

Defining s :R3 × R → R4 to be a back-projection function,

which projects a 2D point u
j
i on the camera image plane to

a 3D point x
j
i =

(

x
j
i , y

j
i , z

j
i , 1
)T

in the camera space,

s(uj
i , d

j
i ) =

(

(uj
i − cjx)d

j
i

f
j
x

,
(vji − cjy)d

j
i

f
j
y

, d
j
i , 1

)T

,

(3)
and x

j
i = s(uj

i , d
j
i ). The 2D point pair

(

ua
i ,u

b
i

)

is therefore

able to be turned into a 3D point pair
(

xa
i ,x

b
i

)

by (3). The

coarse rigid transformation T1 is estimated by

arg min
R1∈SO(3), t1∈R3

n
∑

i=1

1

2

∥

∥

∥

∥

(

R1 t1
0 1

)

xa
i − xb

i

∥

∥

∥

∥

2

2

. (4)

The minimization problem in (4) can be turned into the

Orthogonal Procrustes problem [25] and solved by the least-

squares fitting algorithm [26] efficiently, requiring at least

three corresponding 3D point pairs, i.e. n > 3.

However, preparing some special calibration objects for the

Kinect V2 registration task is sometimes time- and effort-

consuming. How to solve the Kinect V2 registration problem

by only using the information from a nature scene is more

challenging than the above case of using a marker. To deal

with this problem, a novel coarse estimation framework is

proposed and presented in Fig. 2. This framework exploits both

color and geometry feature descriptors to estimate a rough

rigid transformation T1 between two Kinect V2 cameras.

Details about it are described as below:

1) Input Data: Due to the precision problem [3] of the ToF

sensor of any Kinect V2, multi-frame depth information is

used to improve the quality of the captured depth images. For

a static scene and a static multi-camera system, m consecutive

depth and color frames are captured by both CA and CB simul-

taneously. The input data for the coarse estimation framework

are Cj
k and Dj

k, where k ∈ Z+, k 6 m, and j ∈ {a, b}.

2) Temporal Filtering: A temporal mean filter is used here

to calculate an average depth image D̄j for all the Dj
k images.

Note that an underlying depth-validity check is also performed

by this depth temporal mean filter. In particular, only depth

image pixels with depth values larger than 0.5m are treated

as valid pixels for the accumulated weights. A corresponding

average color image C̄j is accordingly generated by using all

the Cj
k images and the same accumulated weights with valid

pixel positions from the depth temporal filtering process.

3) Spatial Filtering: The mean depth image D̄j is then

projected into a point cloud P̄j in the camera space of the

Kinect V2 by using (3). However, the resulting point cloud

P̄j may still have some outliers or noisy data, some of which

are far away from the real captured scene. This will increase

the volume allocation for the volumetric representation in the

following steps, which may lead to a failure if limited memory

is available in hardware, e.g. GPU. To handle this problem,

a statistical spatial filtering method is utilized to trim the

outliers of P̄j . To be precise, each 3D point x
j
i in this point

cloud has a mean distance t
j
i to its l nearest neighbor 3D

points. A 3D point x
j
i will be removed if its distance t

j
i is not

inside the range determined by the global distances mean and

standard deviation. The filtered point cloud is denoted by P̂j

and projected back onto the camera image plane by using

π(xj
i ) =

(

f j
xx

j
i

z
j
i

+ cjx,
f j
yy

j
i

z
j
i

+ cjy, 1

)T

, (5)

which generates a filtered depth image D̂j accordingly.
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Algorithm 1: An ICP-based estimation refinement algo-

rithm.

Input : P̂j from Section II-B3, Rigid transformation T1.
Output: Rigid transformation T2.

/* Step 1: Transform P̂
a

from CA to CB coordinates */

1 foreach point xa
i in P̂a do x

a
i ← T1x

a
i ;

/* Step 2: Point cloud registration */

2 τ ← 0.005;
3 e← +∞, ě← 0, ė← 0;

4 T
a ← I4, Tb ← I4, Ṫ← I4; /* In: n × n identity matrix */

5 while true do

6 Ť
a ← T

a;

7 Ť
b ← T

b;
8 ě← e;
9 e← 0;

10 Ṫ, ė ← ICP(P̂a, P̂b); /* ė: Average error per point */

11 foreach point xa
i in P̂a do x

a
i ← Ṫx

a
i ;

12 T
a ← ṪT

a;
13 e← e+ ė;

14 Ṫ, ė ← ICP(P̂b, P̂a);

15 foreach point xb
i in P̂b do x

b
i ← Ṫx

b
i ;

16 T
b ← ṪT

b;
17 e← e+ ė;
18 if e > ě then

19 T
a ← Ť

a;

20 T
b ← Ť

b;
21 break;

22 if ě−e
e

< τ then break;

23 T2 ← (Tb)−1
T

a.

4) Interest Point Detection: The Speeded Up Robust Fea-

tures (SURF) have robust and stable performance in computer

vision and robotics applications [27]. The SURF interest point

detector is used to detect 2D keypoints on the average color

image C̄j from the temporal filtering step (Section II-B2). The

coordinates of all the keypoints are fed to the next step for

geometry feature calculation. Besides, for each detected 2D

interest point ũ
j
i , the SURF algorithm also generates a SURF

descriptor ω̃
j
i ∈ R64, which is a normalized vector.

5) TDF and 3DMatch: The Truncated Distance Function

(TDF) representation is a variation of Truncated Signed Dis-

tance Function (TSDF) [28]. The filtered point cloud P̂j is

assigned to a volumetric grid of voxels to calculate the TDF

value for each voxel. As for each 2D interest point ũ
j
i , a

corresponding 3D interest point x̃
j
i is computed by (3) with

its depth information from D̂j . A volumetric 3D patch for

each x̃
j
i is then extracted from the volumetric grid, i.e., x̃

j
i is

in the center of a 30× 30× 30 local voxel grid. The extracted

volumetric 3D patch is finally fed into a pre-trained network of

3DMatch to generate a local geometry descriptor ǫ̃
j
i ∈ R512.

6) Feature Concatenation: To make full use of different ad-

vantages of the SURF and 3DMatch descriptors for the scene

representation, a feature concatenation strategy is proposed as

below:

ρ̃
j
i = (1− λ)ω̃j

i ⊕ λǫ̃
j
i =

(

(1 − λ)ω̃j
i

λǫ̃
j
i

)

, λ ∈ [0, 1]. (6)

The resulting concatenated descriptor is denoted by ρ̃
j
i ∈

R576.

7) 3D Point Pair Establishment: After constructing the

concatenated feature descriptor ρ̃
j
i for each 3D interest point

x̃
j
i , the reliable corresponding 3D point pairs in the two Kinect

(a) Average color image C̄a. (b) Average color image C̄b.

Figure 3. The average color images from the temporal filtering step (Section
II-B2). Green circles and red crosses stand for the corners of check patterns.

V2 camera spaces are established by means of the k-d tree data

structure [29] and k-Nearest-Neighbors algorithm [30].

8) Horn’s Algorithm and RANSAC: The final rigid trans-

formation T1 from CA to CB for the coarse estimation step

is calculated by using the Horn’s algorithm [31] together with

the RANdom SAmple Consensus (RANSAC) method [32] for

solving the least squares problem defined in (4).

C. Estimation Refinement

The algorithm for estimation refinement is depicted in

Algorithm 1. The input data for this algorithm are the rough

rigid transformation T1 of the previous coarse estimation stage

and point clouds P̂a and P̂b from the spatial filtering step

(Section II-B3). The point cloud P̂a is firstly transformed into

the camera coordinate system of CB. Afterwards, the two point

clouds in the same camera space are registered by using an

ICP-based method, which in this case is equal to the camera

pose refinement. The final estimation refinement result T2 is

recovered from two intermediate rigid transformation matrices

T
a and T

b.

III. EXPERIMENTS

A. Experimental Settings

1) Camera Setup: The equipment for capturing experimen-

tal data is a multi-camera system as shown in Fig. 1 (a). This

system has two Kinect V2 cameras with similar orientations.

The horizontal displacement between them is around 1.5m.

The Kinect for Windows SDK is leveraged to capture a static

scene for both CA and CB. The intrinsic parameters f j
x, f j

y ,

cjx, cjy and radial distortion coefficients [33] are extracted from

the hardware of Kinect V2 sensors by using this SDK.

2) Static Scene: An example image of the static scene is

exhibited in Fig. 1 (b). The positions of check patterns in the

scene are adopted in the following evaluation metric step. The

size of this scene is 5.5×3.0×3.6m3 (w×h×d). The number

of captured color or depth frames, i.e. m in Section II-B1, is

equal to 31. The average color images of CA and CB described

in Section II-B2 are presented in Fig. 3.

3) Evaluation Metric: The corners of the check patterns

on the average RGB images C̄a and C̄b are manually labeled

in order to establish several common-corner 2D point pairs.

Afterwards, an automatic corner refinement approach with

sub-pixel accuracy is employed to refine the coordinates of

these 2D corner points [34]. Let a common-corner 2D point

pair be denoted by
(

ua
i ,u

b
i

)

as the description in Section

II-B. This 2D point pair is then converted into a 3D point
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Figure 4. The influence of changing λ in the feature concatenation strategy,
i.e. (6), on the registration performance of two Kinect V2 cameras.

pair
(

xa
i ,x

b
i

)

by using (3) and D̂j . Note that, because of the

intensity-related distance error [35], [36] of any ToF sensor,

the depth value d
j
i for a 2D corner point u

j
i is filtered by

a specific filter in [37], where the depth information of only

the white checks around u
j
i is taken into account. The Root-

Mean-Square Error (RMSE) metric is applied to evaluate the

performance of different Kinect V2 registration methods:

RMSE =

√

√

√

√

1

n

n
∑

i=1

∥

∥Txa
i − xb

i

∥

∥

2

2
. (7)

Here, n = 20. All the common-corner 2D point pairs are

indicated by green circles in Fig. 3. Besides, the four common-

corner 2D point pairs represented by red crosses on a board are

utilized to calculate the coarse estimation result in LiveScan3D

[18]. Note that this board plays the same role as a marker.

4) Implementation Details: The SURF interest point detec-

tor and feature descriptor are implemented by referring to their

implementations in OpenCV with default parameters. Each

voxel in the volumetric grid of the TDF representation has

the same size of 0.013 m3. The pre-trained 3DMatch network

from [22] has been optimized on multiple scene reconstruction

datasets in diverse real-world environments at varying scales.

B. Results and Analysis

1) Quantitative Evaluation: The varying λ in Section II-B6

for the feature concatenation strategy has different impacts

on the performance of the coarse estimation phase as shown

in Fig. 4. The yellow solid line stands for the registration

precision of changing λ in (6). It can be found that only

using SURF descriptor (λ = 0) and using 3DMatch descriptor

alone (λ = 1) have similar RMSE results (≈ 11.6mm), which

indicates that both color and geometry descriptors in the coarse

estimation stage are effective for the calibration of the two

Kinect V2 cameras. Besides, when λ = 0.4, the best camera

registration performance is achieved (RMSE = 9.497mm),

which implies that the combination of both color and geometry

information is beneficial for the camera registration task

of Kinect V2 sensors. Since the 3DMatch descriptor ǫ̃
j
i is

not normalized, a vector normalization method is tried here

through dividing ǫ̃
j
i by a Euclidean norm before the concate-

nation operation for the feature descriptors. The blue dash

line reveals the performance of feature concatenation using

the normalized ǫ̃
j
i at varying λ. When using the normalized

3DMatch descriptor alone (λ = 1), the RMSE value increases

Table I
THE RMSE RESULTS OF DIFFERENT METHODS.

Method
Coarse

Estimation (mm)

Estimation

Refinement (mm)

LiveScan3D [18] 12.714 20.116

Gao et al. [21] 79.037 32.416

Proposed 9.497 20.221

dramatically compared with the case of using the original

3DMatch descriptor alone, which suggests that the vector

normalization for ǫ̃
j
i is not helpful for the registration of the

Kinect V2 cameras. Moreover, a reasonable best registration

performance is achieved at λ = 0.5, which demonstrates that

both color and geometry descriptors are of equal importance

for the coarse rigid transformation estimation again.

The performance comparison between the proposed method

and baseline approaches is illustrated in Table I. Here, for

the proposed method, λ = 0.4 without 3DMatch descriptor

normalization is used for the performance comparison, which

is explained by the detailed analysis as above. As can be

seen from the table, the proposed Kinect V2 registration

method with only using coarse estimation achieves the best

performance, which proves the effectiveness of the proposed

camera registration method for Kinect V2 sensors using both

color and deep geometry information. However, the estima-

tion refinement step does not reduce the RMSE values for

LiveScan3D and the proposed method, which means that the

ICP-based estimation refinement algorithm may get stuck in a

local minimum that can be even worse than an initialization,

i.e. the coarse estimation result. The estimation refinement step

is effective only for method [21], whereas its performance is

the worst among these three approaches, which suggests that

estimation refinement will be a necessary step if the camera

registration error of coarse estimation is large.

2) Qualitative Evaluation: The proposed Kinect V2 reg-

istration method is also evaluated qualitatively as illustrated

in Fig. 5. Here, for each Kinect V2 camera, an integration

algorithm in KinectFusion [38] is adopted to fuse all the

depth images Dj
k into a 3D voxel grid using a volumetric

TSDF representation [28]. Specifically, a projective point-to-

point distance metric for the voxel-to-surface distance approx-

imation and a constant weighting function are used in this

integration algorithm [39]. Afterwards, the marching-cubes

algorithm is utilized to extract a mesh standing for the zero-

level isosurface encoded by the TSDF representation [40].

In Fig. 5, the yellow mesh comes from CA and it has been

transformed into the camera coordinates of CB by using the

rigid transformation result, i.e. T1, of the proposed method.

The gray mesh is from CB. It is apparent that these two meshes

coincide very well, which demonstrates that the proposed

Kinect V2 registration method using feature concatenation

strategy for both SURF and 3DMatch features is effective for

the Kinect V2 calibration problem in this static scene.

IV. CONCLUSION

In this paper, a Kinect V2 registration method using color

(SURF) and deep geometry (3DMatch) feature descriptors is

presented. The proposed method is integrated into a coarse-

to-fine framework and it achieves better performance in the
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Figure 5. The visualized camera registration result of the proposed method
using a TSDF representation. The yellow mesh is from CA and the gray mesh
is from CB. Both of them are in the camera space of CB.

coarse estimation stage than in the estimation refinement phase

for a static scene. Moreover, for the proposed method, using

the combination of color and geometry features performs

better than using color or geometry feature alone. Furthermore,

the experimental performance comparison shows the superi-

ority of the proposed method over other baseline approaches.
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