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Abstract—An adaptive algorithm should ideally present high
convergence rate, good steady-state performance, and robustness
against impulsive noise. Few algorithms can simultaneously meet
these requirements. This paper proposes a local and deterministic
optimization problem whose solution gives rise to an adaptive
algorithm that presents a higher convergence rate in the identi-
fication of sparse systems due to the use of the proportionate
adaptation technique. In addition, a correntropy-based cost
function is employed in order to enhance its robustness against
non-Gaussian noise. Finally, the adoption of coefficient reuse
approach results in a good system identification performance
in steady-state conditions, especially in low SNR scenarios.

Index Terms—Adaptive Filtering, Sparse systems, Propor-
tionate Adaptation, Coefficients Reuse, Maximum Correntropy
Criterion.

I. INTRODUCTION

Digital signal processing techniques allowed the advent of

many implementations of adaptive filtering (AF) algorithms

capable of addressing complex applications with challeng-

ing requirements, such as echo acoustic cancellation (AEC),

equalization, prediction, interference reduction, antenna arrays

spatial-temporal processing, spectrum analysis and system

identification [1].

In the case of (but not restricted to) AEC tasks, AF tech-

niques may be employed to electrically emulate the acoustic

echo coupling between the loudspeaker and the microphone

signals [2]. The performance or the convergence rate of

such identification procedure, crucial in telecommunications

systems [3], can be impaired when i) the acoustic impulse

response is long [4], ii) in presence of impulsive noise [5]

or iii) the signal-to-noise ratio (SNR) is low [6]. Before

describing our integrated solution that addresses all these

issues, common approaches to mitigate their impacts will be

presented succinctly.

Fortunately, the problem i) can be mitigated by the use of

sparsity-aware identification schemes (such as the proportion-

ate approach [7]), which take into account the fact that fre-

quently most elements of the transfer function to be identified

are close to zero [8]. The insertion of such prior knowledge

can increase the convergence rate of identification tasks, as

compared to the more naive sparsity-agnostic approaches [7].

Regarding to the problem ii), it is noteworthy that near-

end speech in AEC with double-talk is a common source of

impulsive noise [9], as well as sudden atmospheric phenomena

in telecommunication systems [5]. Although the mean square

error (MSE) minimization has been widely used as a statistical

measure for the development of adaptive filtering algorithms

[10], this cost function is prone to instability in the presence

of impulsive noise [11]. This fact claims robust cost functions,

such as the maximum correntropy criterion (MCC) [12].

The problem iii) can be addressed by minimizing the

weighted summation of squared Euclidean norms of the dif-

ference between the updated coefficient vector and previous

ones [13]. This reusing coefficient (RC) strategy presents

reduced steady-state mean-square deviation with convergence

rate similar to the normalized least mean squares (NLMS)

algorithm in the case of high energy measurement noise [6].

Since the above solutions are derived by different ap-

proaches1, a formal derivation of an algorithm that incor-

porates their capabilities is not straightforward. This paper

achieves this goal through a unified derivation framework.

Section II introduces the fundamentals of classic adaptive

filtering techniques, whose performance can be improved by

sparsity-aware, MCC and RC schemes.The proposed algorithm

is presented in Section III, and its energy conservation relation

is derived in Section IV. The performance of the proposed

solution is evaluated in Section V. Finally, Section VI presents

the concluding remarks.

II. ADAPTIVE FILTERING FUNDAMENTALS

Despite their simplicity (from both conceptual and computa-

tional viewpoints), AF techniques consist of powerful methods

1For example, the proportionate approach uses the Lagrange multiplier
method, while the MCC based derivations usually employ the stochastic
gradient method.
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for addressing crucial tasks in actual digital signal processing

systems. In their most popular form2, such algorithms should

recursively obtain at the kth iteration a vector w(k) ∈ R
N

which emulates the ideal one, w⋆, which is unknown to the

algorithm designer. In supervised settings, one has access to

a reference (or desired) signal d(k) given by

d(k) , x
T (k)w⋆ + ν(k), (1)

where ν(k) is a measurement noise (which can also incorpo-

rate modeling errors) and

x(k) ,
[
x(k) x(k − 1) . . . x(k −N + 1)

]T
. (2)

The least mean squares (LMS) updating equation [14] - the

most popular AF algorithm - may be derived by means of the

stochastic gradient technique, that is,

w(k + 1) = w(k)− β∇w(k)FLMS[w(k)], (3)

where β is a step-size parameter (whose value should be cho-

sen in order to address the convergence rate versus steady-state

performance trade-off) and FLMS[w(k)] is the cost function,

namely a stochastic approximation of the MSE,

FLMS[w(k)] ,
1

2
e2(k), (4)

where

e(k) , d(k)−

,y(k)
︷ ︸︸ ︷

w
T (k)x(k) . (5)

After such definitions, it is straightforward to derive the

LMS update equation:

w(k + 1) = w(k) + βx(k)e(k), (6)

which presents some undesirable features, such as an upper

bound for β that avoids divergence (a catastrophic phe-

nomenon) which is highly dependent of statistical properties

of the input signal [14]. Normalized schemes (e.g., the NLMS

algorithm) do not share several of such critical issues.
The δ-NLMS update equation can be understood as the

solver of the following local and deterministic optimization
problem [15]:

min
w(k+1)

FMDP[w(k + 1)] s.t. ep(k) =

(

1− β
‖x(k)‖2

‖x(k)‖2 + δ

)

e(k),

(7)

where δ is a regularization parameter (hereinafter supposed to

be zero), ep(k) is the posterior error

ep(k) , d(k)−w
T (k + 1)x(k) (8)

and FMDP[w(k + 1)] is a cost function based on the conser-

vative minimum disturbance principle (MDP):

FMDP[w(k + 1)] , ‖w(k + 1)−w(k)‖2. (9)

Note that FMDP[w(k + 1)] penalizes solutions distant from

the previous coefficient vector w(k) (which is coherent to the

MDP principle), while presenting a controlled posterior error

2This paper focus on system identification tasks.

(which can be zeroed under the choice β = 1). The resulting

NLMS algorithm can be written as

w(k + 1) = w(k) + β
x(k)e(k)

‖x(k)‖2 . (10)

A. Enhancing the Convergence Rate

Taking advantage of a prior knowledge of high sparsity

in systems may enhance the convergence rate of adaptation

schemes. One of such strategies is the family of proportionate

algorithms, in which the Proportionate NLMS (PNLMS) [7]

pioneered. Proportionate algorithms distribute the updating

energy proportionally to the magnitude of the adaptive co-

efficients. Proportionate algorithms perform a natural gradient

procedure in a warped coefficient space defined by a specific

coefficient metric [16]. The proportional steps (specific for

each adaptive coefficient) are implemented by a diagonal

matrix Λ(k) and the update equation of the algorithm is given

by

w(k + 1) = w(k) + β
Λ(k)x(k)e(k)

‖x(k)‖2
Λ(k)

, (11)

where ‖x‖2
A

, x
T
Ax. The above update equation can be un-

derstood as the solver of the following constraint optimization

problem:

min
w(k+1)

‖w(k + 1)−w(k)‖2
Λ−1(k) (12)

s.t. ep(k) = (1− β) e(k).

Different choices of diagonal elements of Λ(k) give rise to

different proportional AFs, such as the MPNLMS [17], the

IPNLMS [18] and the IMPNLMS [19].

B. Robustness against Impulsive Noise

It is an established fact that the MSE criterion-based adap-

tive filters may not perform well under non-Gaussian noise.

A more robust alternative is the correntropy, which is a local

similarity measure between random variables X and Y given

by [20]

V (X,Y ) =

∫∫

x,y

κσ(x− y)fXY (x, y)dxdy, (13)

where κσ(x− y) is the Gaussian kernel3

κσ(x− y) ,
1√
2πσ

exp

[

− (x− y)2

2σ2

]

(14)

and σ is the kernel size that induces a trade-off between

steady-state performance and convergence rate [22]. The ker-

nel function (13) transforms data to an infinite dimensional

reproducing kernel Hilbert space F, so that the following

nonlinear mapping Φ holds:

κσ(x− y) = 〈Φ(x),Φ(y)〉
F
, (15)

where 〈·, ·〉
F

denotes the inner product in F.

3There are other possible choices for the kernel function, but the Gaussian
kernel is the preferred one due to the resulting computational simplification
in the algorithm design [21].
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Under the MCC criterion, a stochastic gradient ascent

method with cost function [23]

FMCC[w(k)] , E

{

exp

[

−e2(k)

2σ2

]}

(16)

can be employed to derive the MCC-LMS AF algorithm [12]:

w(k + 1) = w(k) + βexp

[

−e2(k)

2σ2

]

e(k)x(k), (17)

which reduces to the LMS algorithm as σ → ∞. The

normalized version (MCC-NLMS) of (17) is given by [22]

w(k + 1) = w(k) + βexp

[

−e2(k)

2σ2

]
e(k)x(k)

‖x(k)‖2 . (18)

Both update equations (17) and (18) can be derived in
an unified way from the following deterministic optimization
problem [24]:

min
w(k+1)

FMDP [w(k + 1)] s.t. ep(k) =

{

1− γexp

[

−
e2(k)

2σ2

]}

e(k),

(19)

where γ = β‖x(k)‖2 for obtaining (17) and γ = β for

obtaining (18). This paper focus on normalized algorithms,

so that hereinafter the choice γ = β is assumed.

C. Enhancing the Steady-State Performance in Low SNR

Regimes

The popular Affine Projection Algorithm (APA) [25] in-

creases the convergence rate through the reuse of input data.

Such algorithm tends to present poor performance in steady

state as a disadvantage. These characteristics can be considered

dual to those presented by the RC algorithm [13], which im-

plements a reuse of the last L vectors of adaptive coefficients.

The RC family of algorithms combine better performance at

steady-state with a loss in the convergence rate [26]. In order to

take advantage of such complementary features, [27] proposes

and analyzes the joint use of both reuse strategies.

Defining the weighted error e′(k) as

e′(k) , d(k)− ρ− 1

ρL − 1

L−1∑

l=0

ρlwT (k − l)x(k), (20)

the RC-NLMS algorithm can be described as a solver of the

following optimization problem:

min
w(k+1)

FRC[w(k + 1)] s.t. ep(k) = (1− β)e′(k), (21)

where

FRC[w(k + 1)] ,

L−1∑

l=0

ρl‖w(k + 1)−w(k − l)‖2 (22)

and ρ ∈ (0, 1] is a parameter at the discretion of the designer

that controls the influence of older adaptive coefficients in

the update mechanism. The solution of (21) gives rise to the

following update equation:

w(k + 1) =
ρ− 1

ρL − 1

L−1∑

l=0

ρlw(k − l) + β
x(k)e′(k)

‖x(k)‖2 , (23)

so that w(k+1) depends on a weighted sum of the L vectors

w(k− l) (with l ∈ {0, 1, . . . , L− 1}), which softens the filter

oscillations. This feature is responsible for the performance

improvement in steady-state regime, especially in configura-

tions with low SNR [13].

III. PROPOSED RC-MCC-PNLMS ALGORITHM

The previous discussion highlighted the connection be-

tween features of specific deterministic optimization problems

and the overcoming advantages of algorithms obtained as

solutions of such problems. This relationship motivates a

problem-building procedure, whose solution (adaptive algo-

rithm) presents the desirable properties. In order to address

the issues described in Section II, we propose the following

local optimization problem:

min
w(k+1)

L−1∑

l=0

ρl‖w(k + 1)−w(k)‖2
Λ−1(k) (24)

s.t. ep(k) =

{

1− βexp

[

−e2(k)

2σ2

]}

e′(k).

Theorem 1. The vector w(k + 1) that exactly solves (24)

can be expressed as

w(k+1) = θ(ρ)

L−1
∑

l=0

ρ
l
w(k− l)+

βexp
[

− e2(k)

2σ2

]

e′(k)Λ(k)x(k)

‖x(k)‖2
Λ(k)

,

(25)

where θ(ρ) , 1−ρ

1−ρL .

Proof : Using the Lagrange multiplier technique, the opti-

mization problem (24) can be converted into the minimization

of the following unconstrained cost function:

FU[w(k + 1)] =

L−1∑

l=0

‖w(k + 1)−w(k)‖2
Λ−1(k) (26)

+ λ

{

ep(k)−
[

1− βexp

(

−e2(k)

2σ2

)]

e′(k)

}

.

Differentiating (26) w.r.t. w(k + 1) and zeroing the resulting

expression, one finds

w(k + 1) = θ(ρ)

L−1∑

l=0

ρlw(k − l) +
λθ(ρ)

2
Λ(k)x(k), (27)

which gives the format of the update equation. By replacing

(27) in the linear constraint of (24), one concludes that

λ

2
θ(ρ) =

βexp
[

− e2(k)

σ2

]

‖x(k)‖2
Λ(k)

. (28)

At last, the application of (28) in (27) establishes the identity

(25). �

The update equation (25) consists of the proposed solution,

which simultaneously incorporates features of (12), (19), and

(21), so that the resulting algorithm presents high convergence

rate in the identification of sparse responses, robustness against

impulsive noise, and good steady-state performance in low

SNR contexts. We denote the algorithm of Eq. (25) as RC-

MCC-PNLMS (Reusing Coefficient Maximum Correntropy

Proportionate NLMS Algorithm).
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IV. ENERGY CONSERVATION RELATIONSHIP

A popular approach for the performance prediction of

adaptive filtering algorithms relies on an energy conservation

identity [28]. Let us define the following error-related quanti-

ties:

eΣp (k) ,x
T (k)Σw̃(k + 1), (29)

eΣa,l(k) ,x
T (k)Σw̃(k − l), for l ∈ {0, 1, . . . , L− 1}, (30)

where w̃(k) , w̃
⋆ − w(k) is the deviation vector and

Σ ∈ R
N×N is an arbitrary symmetric matrix. Combining

the approaches of [6], [24], [29], [30] one obtains from Eq.
(25) the following weighted variance relation of the RC-MCC-
PNLMS algorithm:

‖w̃(k + 1)‖2 +
2θ(ρ)

‖x(k)‖2
ΣΛk

L−1
∑

l=0

ρ
l
e
Σ

a,l(k)e
Λk

p (k)

+
θ2(ρ)‖x(k)‖2

Λ2

k

‖x(k)‖4
ΣΛk

L−1
∑

l1=0

L−1
∑

l2=0

ρ
l1ρ

l2e
Σ

a,l1
(k)eΣa,l2(k) (31)

= θ
2(ρ)

L−1
∑

l1=0

L−1
∑

l2=0

ρ
l1ρ

l2
w̃

T (k − l1)w̃(k − l2)

+2
θ(ρ)

‖x(k)‖2
ΣΛk

L−1
∑

l=0

ρ
l
e
Λk

a,l (k)e
Σ

p (k) +

[

eΣp (k)
]2

‖x(k)‖2Λk

‖x(k)‖2
ΣΛk

,

which is an exact identity that can be used to perform a

stochastic transient analysis of the proposed algorithm [29].

Note that in the case of steady-state analysis, the choice Σ =
Λk simplifies Eq. (31). Due to the lack of space, a complete

theoretical analysis of the RC-MCC-PNLMS algorithm is not

presented in this paper.

V. SIMULATIONS

The algorithms used for comparison with the proposed RC-

MCC-PNLMS4 algorithm were the NLMS, MCC-NLMS and

MCC-RC-NLMS with parameters L = 1 and L = 7, ρ =
0.9, ǫ = 10−3, λ = 0.96 (see [19]), and σ2

MCC = 2. The

measurement noise ν(k) is given by

ν(k) = (1− ω(k))ϕ(k) + ω(k)φ(k), (32)

where ω(k) is a Bernoulli process with Pr[ω(k) = 1] = 0.99,

and ϕ(k) and φ(k) are white Gaussian noises with zero means

and variances σ2
ϕ = 1 and σ2

φ = 10−1, respectively. Note that

φ(k) emulates an eventual occurrence of impulsive noise.

All results were obtained by averaging 1000 independent

Monte Carlo runs. The ideal transfer function contained 64

coefficients, of which the first three consisted of ones and

the others of zeros. Figure 1 displays the steady-state mean-

square deviation (MSD , ‖w⋆ −w(k)‖2) as a function of β.

These results demonstrate that the proposed algorithm presents

a steady-state performance superior to most of the competing

algorithms.

Figure 2 shows the evolution of the MSD (equalized for

all algorithms in steady state) with the same parameters of

Fig. 1 and with the transfer function of Model 1 of [31]. It

4The chosen proportionate algorithm is the IMPNLMS [19].
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Fig. 1. Steady-state MSD for different β values.

can be observed that the proposed algorithm presents faster

convergence than the other algorithms.
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Fig. 2. MSD evolution for NLMS, MCC-NLMS, MCC-RC-NLMS and RC-
MCC-PNLMS, at equal steady-state performance.

To evaluate the tracking ability of the algorithms, an exper-

iment with an abrupt change of the ideal transfer function was

performed, so that its coefficients are w
⋆
1(k) in the first half

of the iterations and w
⋆
2(k) in the second half, given by

w⋆
1(k)=







1, for k = 0

−0.8, for k = 1

0.3, for k = 2

0, otherwise

, w⋆
2(k)=







1, for k = 0

1, for k = 1

1, for k = 2

0, otherwise

.

Figure 3 shows the MSD evolutions, from which it can be

observed that the proposed algorithm outperforms the others

in relation to the tracking performance.

VI. CONCLUSIONS

Owing to their widespread use in digital signal processing

tasks, the design of state-of-the-art AF algorithms still attracts

the attention of the scientific community. This paper advances

a derivation methodology that smoothly incorporates to the

NLMS algorithm properties that enhance its learning abilities
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Fig. 3. MSD evolution for NLMS, MCC-NLMS, MCC-RC-NLMS and RC-
MCC-PNLMS, at equal steady-state performance for two transfer functions.

in adversarial environments or in the case of sparse transfer

functions. More specifically, in such scenarios the proposed

solution attained faster convergence rates than the traditional

algorithms, when the steady-state performances are matched.

ACKNOWLEDGMENTS

This work was partially supported by CNPq, FAPERJ, and

CAPES, Brazil.

REFERENCES

[1] H. Simon, “Adaptive filter theory,” Prentice Hall, vol. 2, 2002.

[2] Z. Zheng, Z. Liu, H. Zhao, Y. Yu, and L. Lu, “Robust set-membership
normalized subband adaptive filtering algorithms and their application to
acoustic echo cancellation,” IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 64, pp. 2098–2111, Aug 2017.

[3] I. Albu, C. Anghel, and C. Paleologu, “Adaptive filtering in acoustic
echo cancellation systems - a practical overview,” in 2017 9th Interna-

tional Conference on Electronics, Computers and Artificial Intelligence

(ECAI), pp. 1–6, June 2017.

[4] A. Tedjani and A. Benallal, “Performance study of three different sparse
adaptive filtering algorithms for echo cancellation in long acoustic
impulse responses,” in 2017 5th International Conference on Electrical

Engineering - Boumerdes (ICEE-B), pp. 1–7, Oct 2017.

[5] R. L. Das and M. Narwaria, “Lorentzian based adaptive filters for
impulsive noise environments,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 64, pp. 1529–1539, June 2017.

[6] S. E. Kim, J. W. Lee, and W. J. Song, “Steady-state analysis of the nlms
algorithm with reusing coefficient vector and a method for improving
its performance,” in 2011 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 4120–4123, May 2011.

[7] D. L. Duttweiler, “Proportionate normalized least-mean-squares adap-
tation in echo cancelers,” IEEE Transactions on Speech and Audio

Processing, vol. 8, pp. 508–518, Sep 2000.

[8] M. Yamagishi, M. Yukawa, and I. Yamada, “Automatic shrinkage
tuning based on a system-mismatch estimate for sparsity-aware adaptive
filtering,” in 2017 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 4800–4804, March 2017.

[9] M. R. Petraglia, E. L. Marques, and D. B. Haddad, “Low-complexity
affine projection subband algorithm for robust adaptive filtering in
impulsive noise,” in 2016 IEEE Sensor Array and Multichannel Signal

Processing Workshop (SAM), pp. 1–5, July 2016.

[10] M. Xiang, S. C. Douglas, and D. P. Mandic, “The quaternion least
mean magnitude phase adaptive filtering algorithm,” in 2017 22nd

International Conference on Digital Signal Processing (DSP), pp. 1–
5, Aug 2017.

[11] J. Hur, I. Song, and P. Park, “A variable step-size normalized subband
adaptive filter with a step-size scaler against impulsive measurement
noise,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 64, pp. 842–846, July 2017.

[12] A. Singh and J. C. Principe, “Using correntropy as a cost function in
linear adaptive filters,” in 2009 International Joint Conference on Neural

Networks, pp. 2950–2955, June 2009.
[13] H. Cho, C. W. Lee, and S. W. Kim, “Derivation of a new normalized least

mean squares algorithm with modified minimization criterion,” Signal

Processing, vol. 89, no. 4, pp. 692 – 695, 2009.
[14] S. Haykin and B. Widrow, Least-mean-square adaptive filters, vol. 31.

John Wiley & Sons, 2003.
[15] A. H. Sayed, Adaptive filters. John Wiley & Sons, 1 ed., 2011.
[16] S. L. Gay and S. C. Douglas, “Normalized natural gradient adaptive

filtering for sparse and non-sparse systems,” in 2002 IEEE International

Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. II–
1405–II–1408, May 2002.

[17] H. Deng and M. Doroslovacki, “Improving convergence of the pnlms
algorithm for sparse impulse response identification,” IEEE Signal

Processing Letters, vol. 12, no. 3, pp. 181–184, 2005.
[18] J. Benesty and S. L. Gay, “An improved pnlms algorithm,” in Acoustics,

Speech, and Signal Processing (ICASSP), 2002 IEEE International

Conference on, vol. 2, pp. II–1881, IEEE, 2002.
[19] M. Fukumoto, S. Saiki, et al., “An improved mu-law proportionate nlms

algorithm,” in Acoustics, Speech and Signal Processing, 2008. ICASSP

2008. IEEE International Conference on, pp. 3797–3800, IEEE, 2008.
[20] W. Liu, P. P. Pokharel, and J. C. Principe, “Correntropy: Properties and

applications in non-gaussian signal processing,” IEEE Transactions on

Signal Processing, vol. 55, pp. 5286–5298, Nov 2007.
[21] D. Erdogmus and J. C. Principe, “An error-entropy minimization al-

gorithm for supervised training of nonlinear adaptive systems,” IEEE

Transactions on Signal Processing, vol. 50, pp. 1780–1786, Jul 2002.
[22] W. Liu, J. C. Principe, and S. Haykin, Kernel adaptive filtering: a

comprehensive introduction, vol. 57. John Wiley & Sons, 2011.
[23] B. Chen, L. Xing, J. Liang, N. Zheng, and J. C. Principe, “Steady-state

mean-square error analysis for adaptive filtering under the maximum
correntropy criterion,” IEEE Signal Processing Letters, vol. 21, pp. 880–
884, July 2014.

[24] D. B. Haddad, M. R. Petraglia, and A. Petraglia, “A unified approach
for sparsity-aware and maximum correntropy adaptive filters,” in 2016

24th European Signal Processing Conference (EUSIPCO), pp. 170–174,
Aug 2016.

[25] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an or-
thogonal projection to an affine subspace and its properties,” Electronics

and Communications in Japan (Part I: Communications), vol. 67, no. 5,
pp. 19–27, 1984.

[26] S.-E. Kim, J.-W. Lee, and W.-J. Song, “Steady-state analysis of the nlms
algorithm with reusing coefficient vector and a method for improving
its performance,” in Acoustics, Speech and Signal Processing (ICASSP),

2011 IEEE International Conference on, pp. 4120–4123, IEEE, 2011.
[27] S.-E. Kim, J.-W. Lee, and W.-J. Song, “A noise-resilient affine projection

algorithm and its convergence analysis,” Signal Processing, vol. 121,
pp. 94–101, 2016.

[28] T. Y. Al-Naffouri and A. H. Sayed, “Transient analysis of data-
normalized adaptive filters,” IEEE Transactions on Signal Processing,
vol. 51, pp. 639–652, March 2003.

[29] H.-C. Shin and A. H. Sayed, “Mean-square performance of a family of
affine projection algorithms,” IEEE Transactions on Signal Processing,
vol. 52, pp. 90–102, Jan 2004.

[30] D. B. Haddad and M. R. Petraglia, “Transient and steady-state mse
analysis of the impnlms algorithm,” Digital Signal Processing, vol. 33,
pp. 50 – 59, 2014.

[31] I. TSG, 5, digital network echo cancellers (recommendation. tech. rep.,
Tech. Rep. G. 168, ITU-T, 2004.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 474


