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Abstract— Dc-offset estimation of quadrature continuous-
wave (CW) radar has been studied for years. Studies have shown 
that the estimation error increases when target movement with 
respect to the radar is small. This paper presents a method that 
uses multiple simultaneous CW frequencies for the dc-offset 
estimation, which makes the dc-offset estimation easy in contrast 
to the conventional quadrature CW radar. A dc-offset estimation 
method using the multiple CW frequencies is presented to 
demonstrate that the multiple CW frequencies provide sufficient 
information for the dc-offset estimation. 

Keywords— Center estimation, Micro Doppler radar, Dc-offset. 

I. INTRODUCTION 
Respiration, heartbeat rate, and heart rate variability using 

radars are the most interest to researchers. Respiration sensing 
have been studied in [1][2][3], and related products start to be 
released. Heartbeat signals have been also intensively studied 
[4][5]. For both cases, CW radars were used to detect human 
chest movements. CW radar is a simple transceiver with a 
single oscillator, in which the receiver coherently mixes the 
transmitted signal by branching the transmitted signal. 
Quadrature CW radar has quadrature receiver architecture [6], 
in which the received signal is mixed by two orthogonal 
oscillating signals, as shown in Fig. 1. The resultant mixed 
signals are called I and Q signals. Target movement changes 
the phase of the quadrature CW radar, which can be obtained 
by linear or non-linear demodulation [4]. Linear demodulation 
is the small angle approximation when the movement is much 
smaller than the oscillator wave length; for example, the 
movement is smaller than  in [4]. Non-linear 
demodulation is also called arctangent demodulation because 
the phase information is obtained by . Arctangent 
demodulation can be used to precisely calculate the target 
movement if it is smaller than . The problems of non-linear 
demodulation are I/Q imbalance and dc-offset [4],[7],[8],[9]. 
I/Q imbalance introduces errors in the measurement of the 
phase information [6]. The I/Q imbalance measurement can be 
conducted by using a phase shifter [10] or an automatic milling 
machine [11], which is used for artificially moving the target. 
The imbalance is eliminated by using Gram-Schmidt procedure 
[10]. In [9][11][12], the imbalance was calculated and 
compensated by using ellipse fitting algorithms. The dc-offset 
is known to be caused by reflections from stationary objects 
and hardware imperfections [4]. The dc-offset floats when the 
objects move. The dc-offset appears as bias in the I and Q 
signals, where each bias value is different. The dc-offset affects 
the critical performance of the movement estimation [13]. In 
the complex plane of I and Q, the I and Q signals due to the 

target movement are described as an arc, and the dc-offset is 
the center of the arc [8]. Several center estimation methods 
have been studied for the dc-offset estimation 
[5][8][9][14][15]. In [8], a heuristic method was presented, and 
in [5], the heuristic method and geometric fitting method was 
compared. In [5], center estimation methods suitable for real-
time implementations were analyzed. High performance 
techniques using -minimization have also been proposed for 
geometric distance minimization [9] and for algebraic distance 
minimization [14][15]. Linear programming is known for its 
high computational complexity, and its real-time 
implementation is still under research. In the literature, short 
arc lengths have always been found to affect the performance 
of their center estimation methods. 

This paper first describes the center estimation methods for 
the quadrature CW radar, and its center estimation methods are 
presented in Section II. In Sections III and IV, a multiple CW 
quadrature radar and its center estimation methods are 
presented. The multiple CW quadrature radar is a means of 
handling the short arc length problem. It provides an extended 
arc while the target movement conditions are the same. Then, a 
dc-offset estimation method is presented. Simulation results are 
provided in Section V to demonstrate that the multiple CW 
quadrature radar can efficiently estimate the center of an arc, 
whereas the quadrature CW radar cannot be estimated. A 
summary of this paper is provided in Section VI. 

II. QUADRATURE CW RADAR 
The quadrature CW radar shown in Fig. 1 transmits a stable 

wave energy with frequency , which is expressed as 

,             (1) 

 
Fig. 1. Quadrature CW radar architecture 
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where  is the random phase noise of the transmitter. The 
transmitted signal is reflected from objects within the radar 
radiation area. In this paper, it is assumed that the reflection 
comes from a human chest. Thus, the received signal shown in 
Fig. 1 is the sum of the dominant chest reflection signal and 
other object reflections. We can express the output signal of the 
receiver as 

,            (2) 
where is  the baseband amplitude,  is the wavelength of the 
transmitter frequency ,  is the nominal distance between 
the radar and the main target object (human chest in this 
paper),  is the small displacement of the main target 
( ),  is the initial phase offset,   is the phase 
noise difference between the phase noise and the time-delayed 
phase noise, and  is white Gaussian noise.  and  are 
amplitude and phase imbalance of the in- and quadrature-phase 
channels, which is caused by circuit imperfection factors. The 
imbalance can be measured and eliminated by the Gram–
Schmidt procedure [7] 

.        (3) 

 and  in (2) are the dc-offsets of the in- and 
quadrature-phase channels. The dc-offset is known to be 
caused by reflections from stationary objects and hardware 
imperfections [4]. The dc-offset induced by hardware 
imperfection can be easily eliminated by the pre-measurement 
method; however, the dc-offset still remains and varies as the 
position of the target and other objects changes. When the 
target objects are stationary,  and  in (2) are constant; 
otherwise, they change over time. If the dc-offset changes 
slowly, it can be said that the dc-offset is constant for some 
time interval, i.e., quasi-stationary. Then, (2) can be written as 

,             (4)  
where   , , and  is 
the quasi-stationary time interval. This condition is quite 
reasonable in the case of the experiment scenarios that have 
been considered in heartbeat measurement radar research. 

We assume that the phase noise is small  and the 
received signal is sufficiently large against . Then, (4) can 
be simply written as 

, (5) 
which is depicted as a complex plot in Fig. 2. As shown in Fig. 
2,  gives no information in the complex plot because  is 
shown as multiple rotations tracing on the dotted circle. To 
simplify the explanation, we eliminate the  term in this 

section as 

.   (6) 

 

III. MULTIPLE CW QUADRATURE RADAR AND ITS DC-OFFSET 
ESTIMATION 

A multi-frequency quadrature radar is shown in Fig. 3, in 
which the frequency  of the transmitter is variable. This 
architecture has been used for frequency-modulation CW 
(FMCW) radar, step-frequency CW (SFCW) radar, and other 
research areas in many studies [16][17]. The output of the 
receiver shown in Fig. 3(a) can be written as 

,              (7) 

where the  term in (4) is reconsidered as , 
and the discrete frequency value is considered such as SFCW 
radar; ; (7) is equivalent to (6) where , 
and  is the speed of light. If the frequency 
sweep time is sufficiently fast, the displacement  is 
constant for the sweep time. Thus, (7) can be written as 

,              (8) 

where . (8) is the representation of the 
multi-frequency quadrature radar. The set of frequencies, i.e., 

 
lies within a frequency band, where  is the carrier frequency 
of the band, and  is the adjacent frequency difference. The 
popular radar bands are 2.4 GHz, 10 GHz, 24 GHz, etc. In 
these bands, the received signal power values do not vary 
considerably over . For example, Fig. 4(a) shows the received 
signal power of  and , and Fig. 

I

Q

 
Fig. 2. Complex plot representation of :  due to the displacement 

 is located in the thick arc. 

    
Fig. 3. Multiple CW quadrature radar architecture 
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4(b) shows the received signal power of  and 
, where the transmitted signal power is assumed 

to be  and the path loss of the transmitted signal is 
considered as the free-space path loss equation [18] as follows 

    (9) 

where  is set to 1 . In the figures, the variance of the 
received signal powers is less than 0.1 . In this case, we 
assume that  is independent from , so that (8) can be 
written as 

.              (10) 

By considering white Gaussian noise, we write (10) with the 
noise  as 

                 (11) 

We use three methods to estimate the center of (11) for the 
multi-frequency quadrature radar: the circumcenter method 
[19]. 

The circumcenter calculation method is as follows, where 
 is assumed. Three points are selected as 

. Then, the area of , ,  
is calculated. If , the circumcenter can be calculated as  

 ,                     (12) 

where  is a small value, e.g.,  , 
, 

, and . If , 
another  should be taken for other  until . If there is 
no  that satisfies , the method fails. If  is carefully 
designed considering  and , the method would not fail. 
This method is summarized in Fig. 5. 

The circumcenter method requires arc data having a largely 
distributed angle before the algorithm starts. The multi-
frequency quadrature radar is adequate for acquiring such 
largely distributed arc data in a short time. For the quadrature 
CW radar, it is difficult to acquire such large arc data, and a 
longer time is required to obtain the arc dataset. For the 
quadrature CW radar, iterative geometric fitting method is 
advantageous [5], where the geometric fitting requires a quite 
accurate initial value and expensive iterations that may slow 
down the overall data processing. 

 

 

IV. SIMULATION RESULTS 
It is assumed that the offsets of I and Q are neglected, 

which is rejected by the procedure described in Section II. 
Noise  on I and Q is considered as a 2D Gaussian 
distribution with zero mean. The noise variance is expressed as 
signal-to-noise ratio (SNR). The simulated target is at a 
distance of 1 m and periodically moves at  intervals. The 
movement modulates the phase of I and Q signals in the 
receiver, as in (11), and it is expressed as an arc on a circle in a 
complex plot. In the first simulation, it is shown how  affects 
the accuracy of the center estimation.  is set to 1 mm, and 
the data points are uniformly distributed within .  is set to 

 and . SNR is set to 40 dB so that the arc shape 
can be clearly identified. Fig. 6 shows four complex plots for 

 and , in which the real 
center of the arcs is (1,1). Each complex plot has three arcs for 
three s, and the star markers indicate the estimated dc-offset 
of the circumcenter estimation methods. Individual arc 
possession over a full circle is represented as a percentage. For 
a specific m, the arc possessions of the four  are 0.13%, 
0.8%, 3.3%, and 8%, respectively. The advantage of the multi-
frequency quadrature radar over the quadrature CW radar is 
that the arc possession can be extended, although the extension 
is discontinuous. The multi-frequency arc possessions are 
extended to 27.5%, 31.5%, 46.7%, and 42.7%. The arc 
possession directly affects the center estimation performance. 
The center estimation performance in our simulations is 
expressed as the normalized error: 

I

Q

      
(a)                        (b) 

Fig. 5. Circumcenter method: (a) If area , the  is the 
circumcenter of the triangle . (b) Flowchart 

(a)                                (b)                              (c) 
Fig. 6. Multiple arcs for different frequency bands. Arc center is 
commonly set to (1,1): (a)  (b) , and (c)

 

 (a)                          (b) 
Fig. 4. Received signal power (Transmission signal power is assumed to
1mW): (a) 24 GHz band and (b) 2.4 GHz band 
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,      (13) 

where  is the radius of the true full circle. This expression is 
useful to predict the error propagation effect on the 
displacement estimation, for which the non-linear relationship 
is described in [13]. Fig. 7 shows the center estimation 
performance of the multi-frequency and the quadrature CW 
radar by using the previously mentioned parameters, in which 
the circumcenter method is used for the estimation. Fig. 7 
shows that the discretely extended arc possession increases the 
center estimation performance. The quadrature CW radar with 
a small arc possession under 10% shows considerable 
performance deterioration. However, the multi-frequency 
quadrature radar increases the performance as the arc 
possession increases. The amplitude variance is small, such 
that the center estimation error is below 3%, which guarantees 
very small displacement estimation deviation error, according 
to Fig. 3 in [13]. And this also shows that the assumption in 
(13) is correct.  

 
We consider how random noise in the I and Q signals affects 

the center estimation performance. For  the 
performance comparisons with SNR variations from 20 dB to 
50 dB are shown in Fig. 8, where the estimation method is the 
circumcenter method. In this figure, at least  is 
required in order to obtain a center estimation error of less than 
10%. Respiration and heartbeat signals are not uniformly 
distributed within . Many studies [1][4][20] have modeled 
the physiological signal as simple single tones with their proper 
frequencies according to respiration and heartbeat. This single 
tone representation does not accurately describe the 
physiological signal, but more accurate models have been 
proposed in [21],[22]. In [21], the heartbeat signal was 
modeled as Gaussian pulse train as  

,     (14) 
where  is heartbeat frequency,  is the pulse amplitude,  is 
the width of the pulse, and  is sampling time. Fig. 9(a) is the 
arc of (14), in which the data points constituting the arc are 
non-uniformly distributed. In this distribution, the estimation 
performance is shown as solid lines in Fig. 9(b); the 
performance for the uniformly distributed arc data points is 
shows as dashed lines. The non-uniformness does not degrade 
the performance of the circumcenter estimation method for all 
SNRs. We consider the time required for MATLAB to 
compute the dc-offset estimation algorithm by using the profile 
function in MATLAB. For various SNRs, the execution times 

are shown in Table I, in which each time value refers to one 
execution time. The circumcenter method has the computation 
time of around 0.16 ms, which is not affected by SNR. 

 

 

 

V. CONCLUSIONS 
Micro-Doppler radar is a promising technique for non-

contact physiological signal sensing, such as sleep monitoring, 
driver drowsiness/fatigue detection, buried survivor searching, 
and other human motion classifying applications. The multi-
frequency quadrature radar is useful for estimating the center 
of a circle where multiple arcs are placed by small movements, 
where they have discontinuities, i.e., the arc interval, are 
determined by  and . This arc length extension was shown 
to help improve the performance of the abovementioned center 
estimation methods despite the discontinuities. For a given 
movement and distance of a target, the performance of the 
center estimation methods can be evaluated for different values 
of parameters such as , and . Through a series of 
simulations, the multiple CW quadrature radar is found to 
outperform the quadrature CW radar if the parameters are 
properly designed. The multiple CW quadrature radar can 
serve as a dc-tracking method for many real-time applications 

 
Fig. 7. Performance of the center estimation methods for different
frequency bands: (a) quadrature CW radar and (b) multiple CW
quadrature radar 
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Fig. 8. The effect of SNR on the estimation performance 

TABLE I 
COMPUTATIONAL COMPLEXITY 

 Circumcenter/ms 

10 0.165 
20 0.165 
30 0.16 
40 0.16 
50 0.16 

Execution times are measured with 100 iterations and averaged for each 
simulation. 

Q

 
(a)                             (b) 

Fig. 9. Non-uniform distribution of heartbeat data points and its 
performance: (a) the arc of (24) and (b) performance comparison of 
uniform and non-uniform distribution 
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because it can be implemented simply by using voltage-
controlled CW radar hardware. 
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