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Abstract—This paper deals with estimating the endmembers
in a linear mixing model (LMM) of a hyperspectral image,
from measurements acquired with compressive spectral imaging
(CSI) devices. For this problem, a novel approach is developed
exploiting the Rayleigh-Ritz (RR) theory to approximate the
signal subspace where the data lie and the fact that the
endmembers are located at the vertices of a simplex set under
a LMM. The proposed approach first estimates a subset of
eigenvectors to approximate the signal subspace using the RR
theory, and then vertex component analysis is applied to find
the endmembers in the approximated subspace. Simulations
results conducted on realistic compressive hyperspectral images
show that the proposed algorithm can provide endmembers
results very close to those obtained when using uncompressed
images, with the advantage of using a reduced number of
measurements. In particular, the numerical tests show that the
proposed approach is able to estimate the endmembers using
50% of the full data.

I. INTRODUCTION

Hyperspectral (HS) sensors collect data that can be repre-
sented by a three-dimensional data cube [1]. This data cube,
referred to as HS image, is a collection of 2D images, where
each 2D image is captured at a specific wavelength. HS
images are characterized by a high-spectral-resolution which
allows an accurate identification of the different materials
contained in the scene of interest. Analyzing the spectral
information of HS images has allowed the development of
many applications in the fields of remote sensing [2], medical
imaging [3] and astronomy [4].

Commonly, each pixel of a HS image is assumed to
be a mixture of different spectral signatures, referred to as
endmembers. The procedure by which the spectral signature
is decomposed into a collection of these components and a
set of corresponding fractions is a highly investigated process
known as spectral unmixing [5], [6]. In general, there exist
two models for the mixing process, linear and nonlinear. In
particular, the linear mixing model (LMM) assumes that each
pixel of the target image is a linear mixture of spectral signa-
tures. Thus, we can represent each observed spectral vector
as y = Mα, where M = [m1, · · · ,mp] ∈ RL×p is the
endmember matrix whose columns are spectral signatures, p
is the number of materials contained in the image, L is the
number of spectral bands, and α = [α1, · · · , αp]T ∈ Rp
contains the abundance fractions of the endmembers [6].
Under this model, many geometrical, statistical and sparse
regression approaches have been proposed to address the
spectral unmixing problem (see [5] for a complete overview).
Also, LMM is a well known and simple model which
holds approximately when the mixing scale is macroscopic
and the interaction between the reflected radiation of each
endmember is negligible. Conversely, the nonlinear mixing
model is a better approximation when the mixing scale is

microscopic and the materials are said to be intimately mixed
[7], [8].

On the other hand, HS images are limited by their rela-
tively low spatial resolution [9]. In addition to their reduced
spatial resolution, conventional spectral imaging devices have
the drawback of requiring to scan a number of zones that
grows linearly in proportion to the desired spatial or spectral
resolution. Furthermore, HS images demand a large amount
of data that must be stored and transmitted. To overcome
this limitation, and motivated by the compressed sensing
(CS) theory [10], several spectral imagers have been recently
proposed [11], [12]. Compressive spectral imaging (CSI)
techniques [11], [13], [14] exploit the fact that HS images are
sparse in some basis and thus they can be efficiently acquired
and reconstructed by using CS theory. As a consequence,
the images acquired with CSI have a reduced number of
measurements compared to those obtained with conventional
spectral imaging devices, reducing, in turn, the amount of
data that has to be stored and transmitted.

However, standard endmember extraction algorithms,
such as VCA [15], SVMAX [16] or N-FINDR [17] cannot
be directly applied when the observed images have been
compressed. Additionally, the methods based on spectral un-
mixing and the CS theory reported in [18], [19], [20], assume
that the endmembers are known a priori. In general, this
assumption does not hold for many practical applications,
where knowledge about endmember spectral signatures are
highly incomplete, or even totally missing.

Therefore, in this work we present an algorithm deal-
ing with endmember estimation directly from compressive
measurements. More specifically, we aim at estimating the
endmembers in a linear mixing scenario considering CSI sys-
tems those proposed in [12], [21]. We exploit the geometrical
fact that, under the LMM, hyperspectral vectors belong to a
simplex set whose vertices correspond to the endmembers,
and lie in a subspace of dimension p. We also exploit the
Rayleigh-Ritz theory which can be used to approximate
the signal subspace from random projections [22]. More
precisely, the proposed algorithm first estimates a subset of
eigenvectors to approximate the signal subspace using the
Rayleigh-Ritz theory, then reconstruct the spectral vector
using least squares (pseudoinverse) and projects them in the
subspace spanned by the eigenvectors already determined.
Finally, vertex component analysis is applied to find the
endmembers in the projected subspace.

The paper is organized as follows. Section II surveys
relevant background surrounding the Rayleigh-Ritz theory
and vertex component analysis (VCA). The observation
model for the compressed measurements and the formulation
problem are presented in Section III. The procedure to
estimate the signal subspace is described in Section IV.
Numerical results conducted on realistic compressed HS
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images are presented in Section V, whereas conclusions are
summarized in Section VI.

II. PRELIMINARY BACKGROUND
This section presents two required procedures to rapidly

estimate the endmembers from compressive measurements.
Specifically, we briefly introduce the Vertex Component
Analysis (VCA) and the Rayleigh-Ritz (RR) procedure.

A. Vertex Component Analysis
Vertex component analysis (VCA) is a numerical tool to

estimate the endmembers of a scene under a linear mixing
scenario, which exploits two facts. First, the endmembers are
located at the vertices of a simplex. Second, VCA uses the
fact that an affine transformation of a simplex set is also
a simplex set [15]. Specifically, VCA models the spectral
measurements as y = Mγα, where γ is a scale factor
modeling the illumination variability, and the fractional abun-
dance αj represents the fractional area occupied by the mj

endmember. Also, this model leads to two constraints. First,
the spectral signature is a nonnegative linear combination
of endmemembers. Second, the abundances sum to one.
Thus, the complete set of measurements Cp = {y ∈ RL :
y = Mγα,α � 0, 1Tα = 1, γ ≥ 0} is a convex cone
in RL. Based on this model, the VCA algorithm projects
this cone onto a properly chosen hyperplane resulting in a
simplex Sp with vertices being the endmembers. To find the
endmembers, the algorithm works as follows (see [5][15] for
more details):

1) Generate a random vector f orthonormal to the
subspace spanned by the endmembers already de-
termined.

2) Project the data Y = [y1, · · · ,yN ], with N as the
number of pixels, onto f , i.e. v = YT f .

3) Find the endmember yk that maximizes the projec-
tion, where k := argmaxj=1,··· ,N |v|.

4) Repeat until all endmembers are exhausted.

B. Rayleigh-Ritz procedure
The Rayleigh-Ritz procedure is a method for finding

approximations to eigenvalues and eigenvectors of a given
matrix A ∈ Rn×n that cannot be solved analytically [22].
The procedure is as follows

1) Compute an orthonormal basis B ∈ Rn×m, with
m ≤ n, approximating the eigenspace correspond-
ing to m eigenvectors.

2) Compute R = BTAB.
3) Compute the eigenvalues of R solving Rri = λ̃iri.
4) Form the Ritz pairs (λ̃i,ui) = (λ̃i,Rri), i =

1, · · · ,m.
Estimated Ritz pairs are the best approximations to the
pairs (λi,wi) for i = 1, · · · ,m, where λi and wi are the
eigenvalues and eigenvectors of the matrix A, respectively.
Further, the following theorem establishes how close are the
m calculated Ritz pairs to (λi,wi) for i = 1, · · · ,m.

Theorem II.1. Consider that the matrix A has spectrum
SA = {λ1(A), · · · , λN (A)}, where the eigenvalues satisfy
λ1(A) ≥ λ2(A) ≥ · · · ≥ λN (A). The corresponding unit
eigenvectors are wi, for all i = 1, · · · , N . Suppose that, for
a given Ritz vector uk0 the eigenpair (λk0(A),wk0) satisfies
that

λk0(A) = argmin
λ∈SA

|λ− ρ(uk0)|, (1)

where ρ(uk) = uTkAuk. Then,

|sin(φk0)| ≤
‖Auk0 − uk0ρ(uk0)‖2

γk0
, (2)

where θk0 is the angle between uk0 and wk0 , with

γk0 = min
λ∈SA,λ6=λk0

(A)
|λ− ρ(uk0)|. (3)

Proof: The proof of this theorem can be found in [22].

Notice that, from Theorem II.1, the Ritz pairs (λ̃i,ui) can
be considered a reasonable approximation to m eigenpairs
(λi(A),wi), as it can be seen in (2).

III. PROBLEM FORMULATION

In this section we introduce the observation model of CSI
systems and an orthogonal formulation in order to include
the Rayleigh-Ritz procedure in the context of CSI acquisition
model.

A. Observation model

We consider the following model for the observed com-
pressive hyperspectral image

Y = HX (4)

where X ∈ RL×N is the hyperspectral image, with L
as the number of spectral bands and N as the number
of pixels; H ∈ RM×L models the sensing process; and
Y ∈ RM×N represents the acquired data, where M is the
number of measurements. In a CS scenario, it is assumed
that M � L. In (4) we consider that X = [x1, · · · ,xN ],
where each column xi is the spectral signature of a pixel of
the hyperspectral image.

B. Compressive Orthogonal Random Projections

Based on the acquisition model introduced in (4), and
taking into account the singular value decomposition (SVD)
of the matrix H, one can obtain that

Y = (UDVT )X, (5)

where H = UDVT , U ∈ RM×M , V ∈ RL×L satisfy that
UTU = IM , VVT = IL, and D ∈ RM×L is a diagonal
matrix. Note that, given that M � L, the matrix H is rank
deficient, which implies that the inverse problem concerning
to estimate X is an ill-posed problem [23]. Thus, in order
to solve this limitation we first estimate the closest full
column rank approximation to the matrix H. Specifically, we
consider the following lemma for calculating the full column
rank approximation of the matrix H.

Lemma III.1. Define r = rank(H), with r ≤M . Then, the
best low rank approximation of the matrix H is the following
truncated matrix

H̃ = ŨD̃ṼT , (6)

where Ũ ∈ RM×r is the matrix U in (5) with the last M−r
columns removed, Ṽ ∈ RL×r is the matrix V in (5) with the
last (L− r) columns removed, and D̃ ∈ Rr×r is a diagonal
matrix, where its entries are given by the first r entries in
the main diagonal of D in (5).

Proof: The proof of this lemma is developed in [24].
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Considering the full column rank closest approximation
established in Lemma III.1, we can equivalently approximate
the measurements in (4) as

Ỹ = D̃UTY = ṼTX, (7)
The main motivation for considering this approximated sys-
tem in (7) is that this provides a link between the Rayleigh-
Ritz theory and CSI model. Considering the system (7), it
can be observed that

ỸỸT /N = ṼTXXT Ṽ/N = ṼTΣṼ, (8)
where Σ represents the covariance matrix of the dataset X.
Further, notice that XXT = Σ is valid when the dataset has
zero mean. Moreover, it is worth nothing that taking A = Σ,
and B = Ṽ, the matrix ỸỸT /N in (8) represents the matrix
R in the Rayleigh-Ritz procedure summarized in Section
II-B. Further, according to Theorem II.1, the eigenvectors of
Σ, which are the basis of the subspace in which the dataset
X lies, can be approximated using the pairs (λ̃i,ui) yielded
by the Rayleigh-Ritz procedure. The next section introduces
a recent technique based on Principal Component Analysis
(PCA) to estimate eigenvectors of the covariance matrix Σ
using the Ritz vectors.

IV. SIGNAL SUBSPACE ESTIMATION

This section presents a procedure to estimate the finite
dimensional space in which the sensed hyperspectral image
X belongs. In fact, in order to take advantage of the statistical
relationship between the covariance matrix of the data Σ and
the measurements in (8), we use the Compressive-Projection
Principal Component Analysis (CPPCA) technique devel-
oped in [25] to estimate the eigenvectors from compressive
measurements explained as follows.

A. CPPCA procedure

First, we aim at estimating the eigendecomposition of the
covariance matrix Σ from the approximated measurements
Ỹ in (7). To do that, first consider the covariance matrix Σ =
WΛWT such that W = [w1, · · · ,wL], and wi, for i =
1, · · · , N are the unit eigenvectors. Then, consider a fixed
eigenvector wk. Given the fact that matrix Ṽ is orthogonal,
then the orthogonal projector to the generated subspace P by
the matrix Ṽ is given by ṼṼT [22]. Thus, the normalized
orthogonal projection of wk onto P is given by

vk =
ṼṼTwk

‖ṼṼTwk‖2
. (9)

Then, considering (9), in the CPPCA approach is observed
that building an auxiliary subspace Q given by

Qk = P⊥ ⊕ span(vk), (10)

contains the eigenvector wk [25], i.e. wk ∈ Qk, where
P⊥ denotes the orthogonal complement of P . Moreover,
according to the sensing process in (7) we can split the
dataset X = [x1,x2, · · · ,xN ] into J partitions X(j) each
one associated with its own randomly chosen projection
Ṽ(j), for j = 1, · · · , J . We assume that the dataset is
separated such that each X(j) closely resembles the whole
dataset X statistically and so it has approximately the same
eigendecomposition [26], [27]. Thus, forming the corre-
sponding subspaces Q(j)

k for each partition (j) via (10) it
can be concluded that wk ∈ Q(1)

k ∩ · · · ∩Q
(J)
k . Since we do

not have knowledge about the normalized projections v
(j)
k ,

under the assumption that eigenvalue λk(Σ) is sufficiently
separated in value with respect to the other ones, we can
use the Ritz vectors u

(j)
k to approximate v

(j)
k and form the

spaces Q(j)
k [25]. Considering these conditions and due to

Q(j)
k are convex and closed, a projection onto convex set

optimization can be used to approximate W. Thus, iteratively
the eigenvector wk can be approximated as

ŵ
(i)
k =

1

J

J∑
j=1

Q
(j)
k Q

(j)T

k ŵ
(i−1)
k , (11)

where i is the iteration index, the projection onto Q(j) is
performed by the matrix Q

(j)
k =

[
u
(j)
k , I− Ṽ(j)Ṽ(j)T

]
∈

RL×(L+1), and CPPCA initializes ŵ
(0)
k to the average of the

Ritz vectors [25]. The iterations in (11) converges to ŵk

which after appropriate normalization will approximate the
desired eigenvector wk (up to sign) [25]. Finally, we note
that a limitation of CPPCA is given by the fact that the
Rayleigh-Ritz method requires well separated eigenvalues,
which in HS images is true for the first largest eigenvalues.

B. Partitions in a real CSI system

In an ideal CSI system where we can obtain a non-
restricted coding, we can split the dataset X in many
ways. However, in real CSI systems, where we have ap-
proximations to the ideal case, the splitting of the dataset
X in the previous procedure are restricted by the sensing
architecture. For simulations we choose the optical Spatio
Spectral Encoded Compressive HS imager (SSCSI) proposed
in [21], where the spatio-spectral modulation is achieved
by applying a diffraction grating to disperse the light into
spectrum and inserting a coded attenuation mask between the
spectrum plane and the sensor plane. Thus, the coded sensor
image is measured by multiplying each spectral band with
modulation matrices that have the same coded but sheared by
a different amount [21]. This correlation between bands make
the number of partitions be at most J = L. For simulations
we set J = L and we assume that these partitions share the
statistical properties of the complete dataset.

C. Endmember Estimation Algorithm

This section presents the proposed algorithm for esti-
mating the endmembers from compressive measurements.
Algorithm 1 summarizes the proposed procedure.

Algorithm 1 Endmember Estimation Algorithm

1: Input: Y ∈ RM×N , H ∈ RM×L. Choose the number
of partitions J .

2: H̃ = ŨD̃ṼT . (5)
3: Ỹ = ṼTX . (7)
4: Ŵ← CPPCA(Ỹ, Ṽ, J) . Algorithm 2
5: M̂← VCA(Ŵd, Ỹ) . Algorithm in [15]
6: Return M̂

First, Algorithm 1 estimates the measurements of the CSI
system using the approximation defined in (7). Second, the
basis of the signal subspace (i.e. Ŵd) is estimated from
the first d columns of Ŵ using the CPPCA procedure. For
the sake of completeness of the proposed approach, CPPCA
procedure is described in Algorithm 2. CPPCA computes
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the corresponding PCA coefficients using the pseudoinverse
Z(j) = (Ṽ(j)TŴd)

+Ỹ(j). Finally, the VCA procedure is
performed to the subspace previously identified. Here, we
note that if we project the cone Cp, which lie in a subspace
of dimension p in a subspace Ed ⊃ Ep, followed by a
projection in a properly hyperplane, the projection is still
a simplex with the same vertices that Sp.

Algorithm 2 CPPCA Procedure [25]

1: procedure CPPCA(Ỹ, Ṽ, J) . CPPCA procedure
2: Determine

{
Ṽ(1), · · · , Ṽ(J)

}
3: Set:

{
Ỹ(j) = Ṽ(j)T X(j)| j = 1, · · · , J

}
4: Estimate the Ritz vectors{

u
(j)
k | k = 1, · · · , L, j = 1, · · · , J

}
of the L

eigenvectors wk of the matrix Σ̃(j), according to
Section II-B. . (8)

5: P(j)⊥ = I− Ṽ(j)Ṽ(j)T

6: for k = 1 : L do
7: Q

(j)
k =

[
u
(j)
k ,P(j)⊥

]
. (10)

8: ŵ
(0)
k = 1

JL

∑
k,j u

(j)
k .

9: for i = 1 : T do
10: ŵ

(i)
k = 1

J

∑J
j=1 Q

(j)
k Q

(j)T

k ŵ
(i−1)
k . (11)

11: end for
12: end for
13: Return Ŵ = [ŵ1, · · · , ŵL]
14: end procedure

V. EXPERIMENTAL RESULTS

In this section, we examine the performance of the pro-
posed method and we choose the VCA algorithm, which does
not use compressive measurements, for comparison. Two
real-world data sets were considered: Urban and Jasper [28].
The observed measurement were generated by compressing
the hyperspectral images with a sensing matrix whose entries
were drawn using a Bernoulli distribution. This sensing
matrix models the coded aperture in the considered CSI
device (SSCSI), where the value “1” of the Bernoulli variable
corresponds to a light transmissive element and the value “0”
to a blocking element. Additionally, the measurements were
contaminated by additive Gaussian noise, with SNR=25 dB.
For both datasets, the number of projections is K = 0.5L
leading to a compression ratio (K/L) of 50%. The number of
partitions is J = L as discussed above. Finally, the quality of
the estimated endmembers is evaluated using the normalized
mean square error of the endmember matrix (NMSEM) and
the averaged spectral angle mapper (SAM) to measure the
spectral distortion.

A. Urban Data Set

In this experiment the reference image is the Urban
data set generated by the Hyperspectral Digital Imagery
Collection Experiment (HYDICE) on an urban area. We only
worked in a section of 128 × 128 pixels and we remove
low SNR and water-vapor absorption bands resulting in a
HS reference image of size 128 × 128 × 162. The number
of endmembers present in Urban are p = 6, including
roof, grass, asphalt, tree, metal and dirt. The estimated

endmembers are displayed in Fig. 1 whereas quantitative
results are provided in Table I.

Ground truth VCA proposed

SAM
prop
VCA

1.59
0.71 SAM

prop
VCA

1.59
0.71

SAM
prop
VCA

1.51
0.85

SAM
prop
VCA

3.23
2.37

SAM
prop 3.23

SAM
prop
VCA

1.30
3.02

SAM
prop
VCA

0.59
0.16

SAM
prop
VCA

1.61
1.16

Fig. 1: Six unmixed endmembers for the Jasper dataset obtained using VCA
(on full data) and the proposed method (on 50% of measurements) and
compared with the ground truth.

TABLE I: Unmixing Performance (Urban data set): SAM (degrees),
NMSEM (in Decibels), Time (seconds) and the amount of data (%)

Methods SAMM NMSEM Time Data

Proposed 1.6388 -28.3270 1.42 50%
VCA 1.3758 -30.9109 0.19 100%

B. Jasper Data set
In this experiment the reference image is the Jasper Ridge

image collected by the Airbone Visible/Infrared Imaging
Spectrometer (AVIRIS) over Jasper Ridge in central Califor-
nia, USA. We only worked in a section of 128× 128 pixels
and we remove low SNR and water-vapor absorption bands
resulting in a HS reference image of size 128×128×198. The
number of endmembers present in Jasper is p = 4, including
soil, water, tree, and road. The estimated endmembers are
shown in Fig. 2 whereas quantitative results are provided in
Table II.

TABLE II: Unmixing Performance (Jasper data set): SAM (degrees),
NMSEM (Decibels), Time (seconds) and amount of data (%)

Methods SAMM NMSEM Time Data

Proposed 2.2052 -35.9368 1.37 50%
VCA 1.4804 -39.7149 0.18 100%

C. Discussion

As can be observed in Fig. 1 and 2, the recovered
endmembers, using the proposed algorithm on 50% of mea-
surements, exhibit close representations with respect to those
belonging to the ground truth. Furthermore, as can be seen
in the details in Fig. 1 and 2, the estimated endmembers
using the proposed approach can follow complex changes of
the endmember signature. Finally, the SAM values in Fig.
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1 and 2 indicate that the proposed approach (on 50% of
measurements) has a competitive performance compared to
that obtained with the VCA procedure on full dataset.

Ground truth VCA proposed

SAM
prop
VCA

0.99
0.53

SAM
prop
VCA

0.99
0.53

SAM
prop
VCA

6.58
4.63

SAM
prop
VCA

0.57
0.43

SAM
prop
VCA

0.67
0.33

Fig. 2: Four unmixed endmembers for the Jasper dataset obtained using
VCA (on full data) and the proposed method (on 50% of measurements)
and compared with the ground truth.

On the other hand, the numerical results in Table I
and II show that the proposed approach is able to estimate
the endmembers from compressive measurements. Also, it
is important to remark that our method exhibits a similar
performance to estimate the endmembers compared with
VCA, using less amount of data. We finally note that
the proposed method spends more time due to the signal
subspace estimation. However, this is a fast approach when
compressive HS images are considered.

VI. CONCLUSIONS

This paper presented a new algorithm to estimate the
endmembers of an hyperspectral image in a linear mixing
scenario directly from compressive measurements. Our re-
sults showed that it is possible to recover the endmembers
from compressive measurements in a rational time and these
are very close to the endmembers extracted using a full
hyperspectral image. Future work includes the estimation of
the number of endmembers directly from the compressive
measurements. Due to the limitations of CPPCA to estimate
the signal subspace, other methods for this estimation will
be relevant for further research.
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