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Abstract—In recent years, the possibility of easily editing video
sequences led to the diffusion of user generated video compilations
obtained by splicing together in time different video shots. In
order to perform forensic analysis on this kind of videos, it can
be useful to split the whole sequence into the set of originating
shots. As video shots are seldom obtained with a single device, a
possible way to identify each video shot is to exploit sensor-based
traces. State-of-the-art solutions for sensor attribution rely on
Photo Response Non Uniformity (PRNU). Despite this approach
has proved robust and efficient for images, exploiting PRNU in
the video domain is still challenging.

In this paper, we tackle the problem of blind video temporal
splicing detection leveraging PRNU-based source attribution.
Specifically, we consider videos composed by few-second shots
coming from various sources that have been temporally combined.
The focus is on blind detection and temporal localization of
splicing points. The analysis is carried out on a recently released
dataset composed by videos acquired with mobile devices. The
method is validated on both non-stabilized and stabilized videos,
thus showing the difficulty of working in the latter scenario.

I. INTRODUCTION

Manipulating visual contents has become a relatively easy
task, thanks to advanced video editing software and computer
graphics tools. Some forged videos are so well crafted to elude
visual scrutiny even by forensic experts. Therefore, serious
concerns arise about the trustworthiness of the huge number of
videos flowing over the Internet. In the era of fake news, the
risk of being flooded by realistic fake videos is very high, and
definitely alarming. For this reason, there is a growing interest
for automatic tools which can reliably establish video integrity.

A large number of video forensics methods have been
proposed in the literature [1]. Some of them aim at detecting
and localizing video copy-moves, involving the insertion or
deletion of a specific video object in a sequence of frames [2],
[3]. Others specialize on the manipulation of entire groups
of frames [4], [5]. These methods, like many others, rely on
specific prior hypotheses and hence work only for some types

This material is based on research sponsored by DARPA and Air Force
Research Laboratory (AFRL) under agreement number FA8750-16-2-0173.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA and Air Force Research Laboratory
(AFRL) or the U.S. Government.

of manipulation. On the contrary, methods based on camera
sensor noise, also known as Photo Response Non Uniformity
(PRNU), are independent of the specific type of manipulation,
which is why they are drawing considerable attention in both
research and applications.

The PRNU pattern is caused by inhomogeneity in silicon
wafers and imperfections in the sensor manufacturing process,
and can be retrieved in all images or videos taken by a
given camera. Originally, it was used for image forensic tasks,
like source identification or image forgery detection [6], [7].
Very soon, however, it was also exploited for video source
attribution [8], and also to help identifying duplicate and
modified video copies [9], [10].

The extension of PRNU-based methods to video, however,
is not straightforward, and several peculiar issues need to be
properly addressed. PRNU estimation is a much harder task for
videos than for images, since videos are usually compressed
with relatively low quality, compromising the sensor footprints.
Gaining robustness against compression is one of the main
focus of current research. For example, to face the effects of
strong compression, in [11] it is proposed to reorder and weigh
video frames according to their reliability (I-frames turn out to
be more reliable than P-frames for PRNU estimation). Another
major problem is video stabilization, that causes misalignments
of individual pixels across frames. This is a serious issue since
the video fingerprint cannot be estimated by misaligned frames.
In addition, even if available, it may not correlate with the noise
residual extracted from a given stabilized frame [12]. Since
many modern smart-phone cameras adopt video stabilization,
PRNU-based methods are not effective anymore [13] in the
absence of suitable countermeasures.

Even neglecting the above problems, to estimate reliably the
PRNU pattern, a large number of videos should be available.
Unfortunately, this is not always the case. Quite often, one is
required to work in a blind setting, analyzing a single video of
unknown origin downloaded from the net. In this situation, one
can use some of the video frames to estimate the PRNU, but
the quality will significantly impair, not only for the limited
number of available frames but also because of their content
correlation. A possible approach is to work on noise residuals
estimated from the single video and extract as much informa-
tion as possible from them. In [14] some initial video frames
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Shot S1:  f 	∈ [1, 450] Shot S2:  f 	∈ [451, 1050] Shot S3:  f 	∈ [1051, 1650]

Fig. 1: Video sequence composed of 3 shots coming from different devices.

are used to estimate a reference pattern and check for video
authenticity. In [15] the temporal correlation of noise residuals
is analyzed through a Gaussian mixture model, while in [16]
the inconsistencies of the photon shot noise characteristics
are used for forgery detection. In [17] the noise residuals of
a few pristine frames are used to extract reference features
characterizing the video source. When features extracted from
new frames depart from the reference an anomaly is revealed,
which can be used for forgery localization.

Here, we address the detection of video temporal splicing,
which arises when two or more video shots are used to
compose a new video. As in [14], the noise residuals of the
initial video frames are used to extract a reference pattern (a
coarse PRNU estimate), which is used in turn to detect the
presence and position of a possible splicing. The process is
then iterated, with the aim to detect eventually the precise
combination of different shots and their temporal composition.
To the best of our knowledge, this is the first time this
manipulation is considered in the literature.

II. PROBLEM FORMULATION

The PRNU is a noise fingerprint characteristic of any image
and video acquisition device. Specifically, PRNU is introduced
in all acquired images and video frames as a multiplicative
zero-mean noise pattern [6], [7]. Narrowing down the research
field to non-stabilized videos, PRNU can be estimated from a
set of J frames Ij , j ∈ [1, J ] coming from the same device
[7] as

K =
J∑

j=1

WjIj

/ J∑
j=1

I2j , (1)

where Wj is the noise residual extracted from Ij , and all
operations are performed pixel-wise. Precisely, Wj = Ij − İj ,
being İj a denoised version of Ij computed as suggested in [7].
Given a frame I, we can infer whether it has been captured by
a certain camera computing the Normalized Cross-Correlation
(NCC) between W and the camera PRNU pixel-wise scaled
by I, denoted as NCC = ρ(W,KI). If NCC is higher than a
confidence threshold, I is attributed to that camera [6], [7].

The goal of this paper is the blind detection and localization
of video temporal splicing, leveraging PRNU-based source
attribution for splitting the video into the set of originating
shots. Formally, let us consider a video V modeled as the
temporal concatenation of an unknown number Ns of shots

Sn, n ∈ [1, Ns], i.e., V = {S1,S2, ...,SNs
}. Each shot Sn

is composed by an unknown number of frames recorded from
a single device. Devices are assumed to be unknown. Fig. 1
shows an example of video compilation composed by three
shots. Our goal is to estimate the amount of shots Ns, and
segment the video V into its originating shots Sn.

In principle, if each shot corresponds to a single acquisition
device whose PRNU is known, it could be possible to aggre-
gate frames sharing significant correlation with each PRNU,
thus detecting and localizing the various splices. However,
we consider the challenging scenario in which shots’ PRNUs
are not available, as we do not know the camera models
exploited for generating the video compilation under analysis.
To overcome this problem, we propose an algorithm to estimate
the various camera fingerprints directly from video frames,
in an iterative fashion. This allows to blindly identify how
many shots generate the compilation, and localize the splicing
portions. In the next section, we report a detailed description
of the pipeline.

III. PROPOSED METHOD

As previously stated, every analyzed video V is the com-
bination of various shots with distinct characteristics. More
specifically, we are completely unaware of the number of
involved devices, related camera models, and number of frames
of each splicing shot. In this section, we show the rationale
driving the proposed method through an example, followed by
an exhaustive description of the algorithm.

Let us suppose we randomly select from the whole sequence
a reference frame Ir and extract its noise residual Wr [7].
This frame belongs to a random shot, thus its noise Wr is
supposed to correlate only with noise residuals extracted from
other frames of the same shot. By scanning all video frames
If , f ∈ [1, Nf ] and extracting the relative noise Wf , we define
the cumulative sample mean noise as

W(f) =

f∑
i=1

Wi

/
f . (2)

This cumulative noise contains information about noises ex-
tracted from all frames until the f -th one. If V is generated
from a single shot, W(f) is directly related to the PRNU of
the recording camera as defined in (1). In case of multiple
shots, W(f) contains averaged information about different
shots’ fingerprints, depending on f .
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Taking into account these considerations, we can solve the
camera-attribution problem between the available fingerprint
estimate W(f) and the reference frame Ir. It is worth noticing
that, following the theory in Sect. II and computing the frame-
variant NCC denoted as c(f) = ρ(Wr,W(f)Ir), we can
observe this behavior:

• If f < r and the considered f frames do not belong to the
same shot of Ir, c(f) is low and more or less constant.
As a matter of fact, W(f) is a completely wrong estimate
of the fingerprint related to the reference shot and does
not correlate with Wr.

• At a given f ≤ r, W(f) starts being built exploiting
noise residuals from frames belonging to the very same
device of Ir. Hence, W(f) starts matching Wr, and c(f)
begins to increase.

• After all frames of the reference device have been scanned
(i.e., the f -th and r-th frames come from different de-
vices), c(f) starts dropping, since W(f) begins contain-
ing contributions from noises not correlating anymore
with Wr.

For the sake of clarity, we report in Fig. 2 an example of
c(f) behavior over a video composed by three splicing portions
(shown in Fig. 1):

• S1, composed by frames If , f ∈ [1, 450];
• S2, composed by frames If , f ∈ [451, 1050];
• S3, composed by frames If , f ∈ [1051, 1650].

If the reference frame is I100 (i.e., belonging to S1), c(f)
increases up to f = 450, then it starts dropping as frames
after I450 do not belong to S1 anymore. If the reference frame
is I700 (i.e., belonging to S2), c(f) is almost flat for f ≤ 450
(i.e., frames belonging to S1), shows an increasing behavior
for 450 < f ≤ 1050 (i.e., frames belonging to S2), then it
drops again for f > 1050 (i.e., frames belonging to S3). A
coherent behavior can be observed if we consider reference
frame I1300.

Bearing this in mind, the proposed pipeline for blind de-
tection and localization of temporal splicing consists of the
following steps: (i) selecting the reference frame – randomly
select one reference frame from the video and compute
c(f), f ∈ [1, Nf ]; (ii) clustering frames – group together
frames for which c(f) locally increases and delete the selected
group from the entire video; iterate steps (i) and (ii) until
almost all video frames have been clustered in different groups;
(iii) clustering shots – to counteract the problem of over-
estimating the number of splicing shots, cluster the groups
of frames with higher inter-correlation; (iv) assigning left-out
frames – assign the remaining frames to the best-matching
shot. It follows an exhaustive description of each step.

A. Selecting the Reference Frame

Since information about temporal segmentation is not avail-
able, the only way for selecting the reference frame is to pick
it up randomly. Actually, interpretation of c(f) is not always
straightforward like in Fig. 2. As a matter of fact, correlation
c(f) can exhibit an increasing behavior even for frames not

Fig. 2: Example of c(f) behavior over the video shown in Fig. 1.

belonging to the same shot of Ir, as well as multiple local
maxima (e.g., due to correlated frame content). Therefore,
to increase the algorithm’s robustness, we perform multiple
experiments, picking up a pool of different reference frames.

The algorithm extracts R possible Ir frames, and computes
cr(f) for each realization r ∈ [1, R]. We define three quantities
useful to evaluate cr(f) goodness:

• The maximum of cr(f), defined as Mr = max
f

(cr(f)).

• The frame index related to the maximum cr(f) value,
defined as mr = arg max

f
(cr(f)).

• The largest set of frame indexes for which cr(f) shows
a monotonically increasing behavior, defined as ∆r.

The best reference r̃ out of the R ones is selected as the
realization with highestMr, given that mr ∈ ∆r. This ensures
that frames whose index lies in ∆r belong to a single device.
In our experiments, we chose R = 10 as a good trade-off
between algorithm’s robustness and efficiency.

B. Clustering Frames

Once the best realization r̃ has been selected, we average
noise residuals of frames belonging to ∆r̃, in order to estimate
a fingerprint K̂n which will be related to a new shot Ŝn.

To cluster frames together, we follow the standard PRNU-
based source attribution pipeline: being K̂n the estimated
fingerprint, noises from all video frames are correlated with
K̂n. We assign to the new shot Ŝn all frames for which NCC
is above a predefined threshold.

Next operation consists in removing the estimated group of
frames from the video sequence, and iterate steps (i) and (ii)
until remaining frames are less than a default value (e.g., 100
in our experiments).

C. Clustering Shots

Estimation of true fingerprint from a small subset of frames
is far from being an easy task. For this reason, it some-
times happens that frames belonging to the same original
shot are not clustered together, due to low correlation values.
Therefore, we usually end up with an estimated compilation
V̂ = {Ŝ1, Ŝ2, ..., ŜMs

}, whose number of shots Ms is higher
than the true one (i.e., Ms > Ns).

Some control on over-estimation is thus necessary. On the
other hand, it is still better over-segmenting the compilation
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than clustering shots of different sources. To this purpose,
we propose a clustering strategy for blindly grouping shots
wrongly split:

• We compute the reference noise pattern K̂n for each
estimated shot in V̂.

• We correlate through NCC all pairs of reference noise
patterns.

• We cluster different shots if and only if each shot of the
cluster has pairwise NCC with all other shots greater than
a threshold Γ, and the cluster is composed by temporally
adjacent shots.

• The estimated video sequence V̂ now includes a reduced
set of shots, whose fingerprints are the average of noise
patterns inside the same cluster.

This procedure is iterated manifolds, until no more shots are
aggregated.

D. Assigning Left-Out Frames

At this step, the compilation V̂ = {Ŝ1, Ŝ2, ..., ŜLs
} includes

the reduced set of Ls shots, while at most 100 remaining
frames have not been assigned to any contribution. The easiest
way for labeling them is to apply the standard PRNU-based
source attribution pipeline. We assign each singleton frame to
the shot whose estimated fingerprint better correlates with the
frame noise residual.

IV. EXPERIMENTS AND VALIDATION

In this section we first introduce the datasets used for
experiments, then we report the achieved results.

A. Datasets

Splicing portions have been collected from a recently re-
leased dataset, acquired with more than 30 mobile devices
[13]. More specifically, we created two distinct datasets for
non-stabilized and stabilized compilations. For the sake of
brevity, from now on we describe the generation process of
non-stabilized compilations, but procedure still remains the
same for both cases.

From dataset [13], we select non-stabilized devices with
minimum Video Resolution set to HD-Ready (VR ≥ 720p).
Then, 5 videos per device are collected, randomly picking from
indoor/outdoor scenarios and considering only move/panrot ac-
quisition modes. This choice comes from the idea of generating
plausible results, since combinations of flat or static videos are
actually less likely to be found.

For each device, we cut the 5 selected videos at frame
index 150, 300, 450, 600, 750, respectively, in order to generate
splicing portions of different lengths. The splicings are then
cropped to common resolution of 720× 720 pixels and gray-
scale converted. Since the available non-stabilized devices are
19, we end up with a pool of 95 distinct splices.

The final video compilation is obtained as the temporal
concatenation of Ns ∈ [3, 6] splicing portions, randomly
extracted from the pool. Following this pipeline we generated
two datasets, covering 150 non-stabilized videos and just as
many stabilized.

Fig. 3: Results for non-stabilized video compilations.

Note that datasets also include challenging situations, e.g.,
one compilation can contain: (i) 2 or more splicing portions
with different scene content but belonging to the very same
device; (ii) content-similar portions coming from different
sources. Since we aim at estimating the temporal splicing due
to device change, not to scene, in case (i) contributions of the
same source are labeled as a single unique splice.

B. Evaluation Metrics

We developed two kinds of accuracy measures for infer-
ring the quality of proposed method in splicing localization.
Specifically, Aorig and Aest are defined as:

• Aorig: for each original shot, Aorig is the percentage of
frames belonging to that shot which actually have been
labeled as a unique cluster in the estimation process. This
measure detects presence of over-segmentation.

• Aest: for each estimated shot, Aest is the percentage of
frames belonging to that shot, which effectively belongs
to a unique original splice. It decreases in case of under-
segmentation.

Concerning quality evaluation in identifying the number of
shots in the compilation, it is paramount to take into account
previous considerations made in Sect. III-C. Our goal is to
reduce as much as possible the error in the amount of estimated
shots, still favoring over-segmentation in order not to mix
various devices together. We define Es as the error in estimating
the number of shots which generates the video.

Accuracies and Es are averaged over the total amount of
contributions in a single compilation.

C. Results

We show results in terms of mean Aorig,Aest, Es over the
two datasets of non-stabilized and stabilized videos. More
specifically, we evaluate these measures for different values
of threshold Γ exploited for clustering splices.

Fig. 3 depicts outcomes for non-stabilized compilations.
The more Γ increases, the less splices are clustered. Hence,
while accuracy Aorig decreases for over-segmentation, Aest

gets approximately to 0.95. Note that we must necessarily
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Fig. 4: Results for stabilized video compilations.

investigate accuracy behavior together with Es, otherwise we
could fall into several interpretation mistakes. Higher values
for Aest are feasible only as long as Es does not excessively
grow. For this reason we introduce a new accuracy measure,
averaging Aorig and Aest versus Γ, ending up with Â.

We think of Â representing a good measure for the selec-
tion of best Γ for clustering. Indeed, Â takes into account
both over-segmentation risk (highlighted by Aorig) and under-
segmentation risk (stressed by Aest). In light of this, we note
that the best threshold values are Γ = {5, 6} × 10−3, which
guarantee Â around 0.9, and segmentation error Es below +1
over-estimated splices on average.

As far as stabilized compilations are concerned, results are
shown in Fig. 4. Note that, in this situation, the PRNU-based
source attribution approach is severely hindered. As a matter
of fact, Aorig is always well below 0.7. On the other hand,
Aest achieves very good measures, reaching scores about 0.94.
We must beware of this result: the behavior of Es is far from
being acceptable, as Es > 4 for all thresholds. This means that
we are actually over-segmenting shots very often. However,
as PRNU estimation is known to be a challenging task for
stabilized videos, these results are expected.

V. CONCLUSIONS

In this paper we considered the problem of blind detection
of video splicing exploiting PRNU-related traces. In particular,
we considered the analysis of a video compilation composed
by an unknown amount of shots coming from an unknown
amount of different devices. The proposed algorithm estimates
the number of shots, as well as their starting and ending points
in time.

The proposed method is an iterative algorithm leveraging
the idea that noise traces (related to PRNU) extracted from
different frames within a sequence should correlate only if
frames have been acquired with the same device. It is therefore
possible to iteratively group frames generated from the same
device, eventually estimating all frame clusters, i.e., different
shots.

Validation is carried out on a dataset of videos acquired
with modern smart-phone devices in order to simulate a real-

world scenario. Despite the promising results obtained on non
motion-stabilized video sequences, this study confirms that
video stabilization is a highly-corruptive operation in terms
of PRNU-based detectors. As a matter of fact, our method’s
accuracy drops if considered sequences are stabilized.

In light of this, future work will be devoted to the estimation
of robust noise camera fingerprints from stabilized videos.
Indeed, this technology is rapidly spreading among many
device vendors, thus making video device attribution an even
more challenging task in the near future.
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