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Abstract—This work elaborates on the cycles involved in 
developing ADAS applications which involve resources not 
permanently available in the vehicles. For example, data is 
collected from LIDAR, video cameras, precise localization, and 
user interaction with the ADAS features. These data are 
consumed by machine learning algorithms hosted locally or in 
the cloud. This paper investigates the requirements involved in 
processing camera streams on the fly in the vehicle and the 
possibility of off-loading the processing load onto the cloud in 
order to reduce the cost of the in-vehicle hardware. We highlight 
some representative computer vision applications and assess 
numerically in what network conditions offload to cloud is 
feasible. 
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I. INTRODUCTION 
Self-driving car technology is becoming a reality and the next 
steps in its availability to consumers involve the reduction of 
cost of in-vehicle processing hardware and legislative changes 
to accommodate scenarios where a human is not behind the 
wheel. This paper focuses on the first problem, wherein 
Advanced Driver Assistance Systems (ADAS) processing 
hardware required to run environment detection is still too 
expensive for mainstream adoption. The usage of Graphical 
Processing Units (GPUs) for computer vision has drastically 
improved the execution time [1] however these are costly, 
need to be automotive grade, and are energy hungry which 
also drives the fuel consumption up. 
Computer vision is a research field which attracted a lot of 
attention in the recent years mainly due to its applications. The 
pioneering applications were handwriting recognition where 
the focus was on accuracy and has gradually transitioned to 
object detection and more advanced pattern recognition that 
mimics the human brains’ activity while performing certain 
tasks. Medicine is another example where computer vision has 
become an assistant to doctors in analysing x-ray imagery. 
The most demanding applications are those in which the 
output of the analysis has a hard time deadline – an object 
detected too late can lead to self-driving cars’ inability to 
avoid object and thus cause accidents. One of the most 
challenging task is to develop computer vision capable to 
drive both in highway scenarios, where the environment is 
controlled by unidirectional movement and clear lane 
markings, and an urban scenario where object movement is 

omnidirectional and objects can vary from vehicles to road 
furniture and buildings and more importantly, persons.  
Matching patterns directly with the input signal has proven 
unfeasible for real-time applications [2] and implementations 
using neural network have achieved satisfactory processing 
times [2] The implementation of neural networks can take 
advantage of the GPU’s internal architecture, cutting the 
execution time by an order of magnitude [2] compared to 
Central Processing Units(CPUs). However due to cost 
constraints explained earlier in the automotive scope, one 
question arises, namely, whether or not some of the 
computational efforts can be offloaded to external systems? 
The only viable solution to move the data from the vehicle to 
other systems for analysis is over a wireless technology 
capable to support the required transfer speeds. It is only 
technology such as 5G that promises to deliver the 
architecture and transfer speeds capable of supporting such 
offloading function. 
This paper looks into some of the computer vision 
applications that run in a vehicle, giving concrete numerical 
examples of processing requirements. A numerical analysis is 
then performed to investigate on the network requirements and 
feasibility of offloading data to the cloud. This is done in the 
context of the research and exploitation cycles involved in the 
development of ADAS applications built on top of computer 
vision. 
The rest of the paper is organized as follows. Section II 
highlights relevant works in the field, Section III gives 
examples of ADAS applications that rely on video input to 
obtain information about the environment and the driver, 
Section IV gives a numerical analysis into the feasibility of 
offloading some of the computer vision applications onto the 
cloud, and Section V concludes the paper. 

II. LITERATURE REVIEW 
In [3] the authors investigate the effect of network delay onto 
the deviation from course of car controlled from the cloud. 
The work also proposes and architecture that employs Mobile 
Edge Computing (MEC) as a means of reducing the latency 
between the control entity (e.g. EUTRAN Node B) and the 
vehicle. One of the important takeaway message from the 
work in [3] is that a network delay over 150ms renders any 
remote control as having a 40% deviation from trajectory, 
which actually means that the network constraints should be 
much lower than that value. 
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In [4], the authors investigate the ADAS applications that can 
be offloaded from the vehicle to MEC nodes which in their 
work are located in the Road Side Units (RSUs), while the 
network configuration is done using Software Define 
Networking (SDN) concepts. Their work proves that the 
network and compute architecture can be designed to cope 
with the data volumes and latency requirements when the 5G 
architectural features are employed. Similar conclusion is also 
reached by other works, such as [5]. 
In [6] the authors highlight the capabilities of the 5G network 
for mobility scenarios, where for a 28GHz 5G spectrum 
allocation a vehicle travelling at 100 km/h can achieve a stable 
connection of 1.2Gb/s which is the value we use in our 
numerical analysis. 
The general goal of computer vision is to extract some 
interpretable and high-level information from matrices of 
numbers, which are the images and sequences of them. The 
current state-of-the-art has moved from classical approaches 
[7] to Deep Learning pipelines [8] that have overwhelmingly 
outperformed the first ones in many tasks, like ADAS-related 
[2] which are treated in this work. This has been also possible 
due to the existence of large annotated datasets and powerful 
GPU computing hardware. However, allocating the required 
systems for their deployment in vehicles imposes several 
constraints and dedicated resources depending on the 
application. These requirements and their relation to Deep 
Learning trend for Real-Time applications in Automated 
Vehicles are reviewed in [9], which also proposes a FPGA 
implementation as an efficient alternative with some 
restrictions and future trends. 

 

III. ADAS DATA COLLECTION AND PROCESSING 
REQUIREMENTS 

ADAS is a field of research and strong industrial development 
within the area of Intelligent Transportation Systems (ITS). 
Mainly due to safety concerns towards reducing the number of 
fatalities on the roads worldwide [1]. ADAS can be also seen 
as a reduced and individually tackled set of challenges within 
the scope of driverless vehicles [2]. Despite the early start of 
exploratory work in autonomous vehicles in 1986, the area has 
recently attracted a lot of interest from academy and large 
amounts of investment from industry [2]. Most of the systems 
can still be considered as separate dedicated modules for 
specific ADAS functions with increased complexity along the 
years. Nevertheless, there exist an important force integrating 
several sensors in the car and working on the fusion of their 
data streams. This imposes several requirements both on the 
acquisition and processing of the data to obtain meaningful 
patterns and semantics which are helpful for the ADAS and 
driverless tasks. 
Furthermore, recent advances on big data processing based on 
Deep Learning approaches have pushed forward the current 
state of the art. Deep Learning has proved to be a powerful 
mechanism to learn complex data patterns yielding high 
detection rates compared to traditional computer vision 
algorithms. However, this has required the use of large 

datasets and powerful hardware devices based on latest 
advancements in GPU technology [8]. 

A. ADAS Computer Vision Applications 
The following sections describe a set of representative ADAS 
applications within the state of the art. They are focused on 
camera and LiDAR sensors which are the ones with highest 
bandwidth and computation requirements. They rely on 2D 
and 3D modalities to perceive the environment surrounding 
the vehicle and to monitor driver behaviour on board. 
 
Multi-lane detection 
Lane detection and modelling methods detect the presence of 
lane markings in the scene and fit a road model to them to 
determine the position of the ego-vehicle within its lane, the 
presence and curvature of adjacent lanes, and the type of lane 
markings. Historically, lane detection was the first effective 
computer vision method used in the automotive industry for 
ADAS. As a result, many approaches exist which provide 
accurate results and low computational cost. Implementations 
on standard ARM processors @1GHz can run in 10ms [10], 
while multi-lane road segmentation approaches can take from 
6 to 1200ms on GPU-enabled HW [11].  
 
Object detection 
This is the function which determines the position, size and/or 
other spatial properties of specific types of elements in an 
image. Typically, dictionaries for specific scenarios determine 
which classes are detectable. In the context of ADAS, these 
classes include elements such as car, pedestrian, bicycle, 
truck, pole, traffic sign, etc. It is crucial to provide a reliable 
detection as the car is sharing the road with many traffic 
participants, particularly in urban areas. This task is 
challenging because of the wide variety of object appearances 
and occlusions caused by different objects or infrastructure in 
the observed scene. Besides, there are illumination changes 
and other artefacts depending on sensor modality. A 
comprehensive review of object detection methods is provided 
in [2]. On the one hand, 2D object detection is carried out on 
images from cameras to find the location of bounding boxes 
around the objects of interest. On the other hand, 3D object 
detection is performed on the fusion of 3D point clouds from 
LiDAR and images from cameras to find the location of cubes 
around the objects in 3D space. This task requires 
synchronized data streams from a LiDAR and one or more 
cameras. There are several approaches to fuse the sparse data 
from the LiDAR with colour images like these ones [12] [13]. 
A number of successful multi-class object detection 
techniques have appeared in the recent years, thanks to the re-
birth of neural networks, in the form of deep learning models, 
such as Faster R-CNN [14] or MobileNet [15], which are able 
to provide extraordinary detection accuracy and robustness 
and operate real-time in GPU-enabled platforms. For instance, 
experiments carried out in Nvidia DrivePX2 having a dGPU 
with 1152 cuda cores, we obtained inference times from 20-
35ms per 3Mpixels image using different SSD and Faster-
RCNN models. Other Deep Learning models for 2D object 
detection in the literature [11] have reported times between 
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471 to 1476ms in Nvidia K40 (2880 cuda cores), between 80 
to 300ms in Nvidia Titan X (3072 cores) and up to 4200ms in 
Nvidia GTX 1050 (256 cores). These values depend on the 
complexity of the neural network architecture and the size of 
their input layers. 
 
Scene semantic segmentation 
This is a fundamental topic in computer vision in which each 
pixel in the image is assigned a label from a predefined set of 
categories [16]. They typically consist of road, sidewalk, sky, 
vegetation, traffic signs, people, vehicles, etc. A sample image 
in Figure 1 illustrates the case. Given the natural complexity 
of urban scenes and depending on the number of selected 
classes, this task requires high computation resources not only 
during training to learn the patterns but also during inference 
due to its pixelwise design. In the state of the art, DNN 
approaches reported per frame delays between 33ms to 
35seconds for Nvidia Titan X, depending on the proposed 
model [11]. 
 

 
Figure 1:  Example of semnatic segmentation 

Visual odometry 
In visual odometry the goal is to recover the full trajectory of a 
camera system from images. A relative transformation is 
estimated to represent the vehicle motion from one-time step 
to the next one. This is achieved by registering two 
consecutive frames based on matched salient features. The 
current state of the art in this task can obtain good results in 
standard CPUs without requiring further processing 
capabilities [17]. 
 
Stereo reconstruction 
Using a pair of cameras in a stereo setup, depth information 
can be recovered from the 2D images, thus achieving a 3D 
reconstruction of the scene. This process requires a good 
camera synchronization and a previous calibration of the 
stereo rig. Then, an expensive pixel-based or region-based 
algorithm obtains the disparity between the images. 

The algorithm finds correspondences between the two views 
at the same point in time which are the projections of the same 
physical surface in the 3D world. The challenge is to obtain a 
disparity map as dense as possible to increase 3D accuracy 
and this poses important computing requirements [18]. For 
instance, different algorithms take from 410 to 1300ms in 
Nvidia Titan X and 470ms in Nvidia GTX 1080 (2560 cores). 
 
Driver monitoring 
Fully autonomous cars will potentially require few 
participation of humans in the driving tasks. However, as the 
technology transitions to that final goal of autonomous 
vehicles, there is still the need to monitor the attention state of 
the driver [19]. Nevertheless, specific scenarios will require 
driver engagement. Image-based systems are one of the best 
options for monitoring the distraction and fatigue level of the 
driver[20]. Usually these systems capture images from the 
face (see Figure 2) and body and process them in two steps. 
First, several relevant features are computed such as eyelid 
activity, eye gaze direction, head pose or upper body pose. 
Then, the driver attention state is evaluated using these 
features. Modern driver monitoring systems are based on 
different machine learning techniques, including deep learning 
architectures such as MobileNet [14], SSD [21] and ResNet 
[22] to extract the physiological features of the driver and 
extract data patterns that indicate the attention level.  
 
 

 
Figure 2: Example of DMS measurements 

Numerical examples of GPU requirements per ADAS application 

 
Table 1 gives some numerical examples from our experience 
on running ADAS applications on GPU hardware. The table 
also highlights the network requirements needed in order to 
support a specific application. The compressed size of the 
network stream was calculated using the height	 x	 weight	 x	
frame_rate	 x	 motion_factor	 x	 0.07, as it’s the case for the 
H264 format. The motion factor value was 4, which is the 
suitable for video input with high motion elements, such as 
sports or, in our case, vehicles moving at speed. 
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Table 1: GPU requirements versus execution time and network utilization 

Application Image size Time per frame Processing Stream size 
uncompressed (Mbps) 

Stream size 
compressed (Mbps) 

2D Object detection 0.5 Mpix colour 30 – 4200 ms GPU cores 3072 to 640  300   3.5  
Multi-Lane detection 0.5 Mpix colour 6 – 1200 ms GPU cores 3072 to 640  300   3.5  
Scene semantic segmentation 2Mpix colour 60 – 35000 ms GPU cores 3072 to 640  1,200   14  
3D object detection 0.5 Mpix image + 

1M 3D points 
300 – 1000 ms GPU cores 3072 to 640  396   99.5  

Stereo reconstruction 2x0.5 Mpix 470 – 1300 ms GPU cores 3072 to 2560  600   7  
Driver monitoring 0.3 Mpix 13 – 70 ms  GPU cores 3584 to 256 180 2.1 

IV. NUMERICAL ANALYSIS 
Table 1 describes the relationship between runtimes and 
processing hardware requirements as reported in the literature 
and some of them also measured in our experiments. 
Typically, the higher number of GPGPU cores, the lower 
processing times. However, literature in Deep Learning 
applied to ADAS is broad and many other aspects can 
influence the delays: complexity and combinations of neural 
network architectures, size of input layer, software platform 
(Caffe, Tensorflow, Theano), network and/or hardware 
optimizations, coding language (python vs C++), etc.  
 
A. Parallel performance 
As observed in Table 1, the execution time for certain 
computer vision automotive applications can be small, which 
would qualify as real-time image processing. A typical 
threshold in the literature [2] is 30 to 40 milliseconds 
processing time per frame, at a 25 frames per second video 
rate. However, the execution time is mainly influenced by the 
number of GPUs available for processing. Figure 3 depicts the 
applications highlighted in Table 1 that rely on GPUs for 
image analysis. Let us consider the slowest processing time 
given the best hardware available is used, which in our case is 
stereo reconstruction. The minimum time to process a frame 
for this application is 470 milliseconds and an algorithm using 
fused information from all video cameras and application can 
only take decisions as fast as the slowest feed, which is 470 
milliseconds in our case. Given that the execution time 
depends on the number of GPU cores that we offer to a 
specific application, we took an approach to determine the 
number of cores that can be released and reused in other 
applications, so as to delay the execution of other applications 
up to the slowest application that runs on the best hardware.  
We can thus observe from Figure 3 that more than 1000 cores 
can be freed up and offered to other applications as the best 
parallel performance is limited by the slowest performing 
application. The calculations have been done with 3072 cores 
available to each application and that would yield the 
application’s fastest execution time, while the slowest 
performance is computed at 640 cores per application. The 
number of cores needed by a delayed application is calculated 
through linear interpolation, and depicted in Figure 3. 
 
B. Network requirements for cloud offload 
We move now to discussing the implications and feasibility of 
transferring some of the video feeds to external systems where  

 
Figure 3: Processing time versus ADAS application. (Note: x-axis is 

logscale) 

processing is scaled up more easily and running costs are 
smaller. One such external system is the cloud, where current 
research trends have triggered cloud providers to offer GPUs 
not only for video rendering but also for running neural 
networks for machine learning algorithms. In this work we 
investigate the network demands of the applications in Table 
1. We considered the applications that need GPU for video 
processing and considered the number of cores needed when 
all these applications run on 3072 cores GPUs in the vehicle. 
The question we want to answer is how many of these cores 
are actually needed, given that the video content can be 
uploaded to the cloud where processing is cheaper and faster, 
however the size of the video feeds poses a real problem. In 
Table 1 we observe the transfer rates required for both 
uncompressed and compressed video feeds. The reason we 
considered the compressed solution is that the combined size 
of the video feeds is considerably larger than the capabilities 
of current wireless and cellular technology. We show in 
Figure 4 that the total number of GPUs required to run all the 
applications is over 18944, and the figure also depicts the 
number of cores that can be offloaded to the cloud, for 
uncompressed video feeds. We have considered going up to 
1Gbps upload speed for a connected vehicle, which can be 
achieved in theory by 5G technology. The figure shows that 
even at a high upload speed, only 2 applications can be 
offloaded to the cloud for processing, and that without 
considering the possible delays that can affect the local 
decision making. 
Figure 5 shows that the cloud can be really considered as an 
offload solution as the required upload speeds are an order of 
magnitude smaller than in the case of uncompressed video.  
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Figure 4: Number of GPU cores that the cloud can support versus 
the speed of the vehicle's network connection transferring 
uncompressed video content. Secondary y axis shows number of 
ADAS applications that the vehicle can offload to the cloud (i.e. red 
line). 

With speeds of 130 Mbps all 5 ADAS applications can have 
their associated video feeds transferred to the cloud and 
analysed there by GPUs. There are some drawbacks when 
using compressed video, however where sufficient network 
resources are guaranteed to vehicles, Figure 5 shows that it is 
feasible to consider video processing offloading to the cloud.  

 
Figure 5: Number of GPU cores that the cloud can support versus 
the speed of the vehicle's network connection transferring 
compressed video content. Secondary y axis shows number of ADAS 
applications that the vehicle can offload to the cloud (i.e. red line) 

Network latency can become another factor in the decision, 
and current research trends showed that could-like compute 
power can be brought closer to the end users by employing the 
Edge Computing paradigm[3], [4], [6]. In case of utilizing a 
cellular network infrastructure for connectivity, then the 
mobile network architecture of the future will incorporate 
Edge Computing functions [6]. This will have a great impact 
on reducing the latency of the connection and some research 
[6] even considered offloading decision-making to servers 
running on the edge of the cellular network, at one-hop 
network distance from the actual vehicle. 

V. CONCLUSION 
This paper focused on ADAS applications which involve the 
aid of computer vision breakthroughs for processing a large 
volume of video input captured from cameras capturing both 
the interior and the surrounding environment of a vehicle. 
These applications need GPUs for near real-time processing, 

so as to allow the output of the processing to be used by self-
driving algorithms. The paper gives examples of ADAS 
applications and performance characteristics and we showed 
that with the help of 5G speeds some of the ADAS 
applications can be offloaded to the cloud. This is an ongoing 
investigation, and our future work will focus on incorporating 
more factors such as network latency and more varied 
benchmarks for computer vision performance. 
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