

The role of cloud-computing in the development and
application of ADAS

Cristian Olariu
Innovation Exchange

IBM Ireland
Dublin, Ireland

cristian.olariu@ie.ibm.com

Juan Diego Ortega
Intelligent Transport Systems and

Engineering
Vicomtech

San Sebastian, Spain
jdortega@vicomtech.es

J. Javier Yebes
Intelligent Transport Systems and

Engineering
Vicomtech

San Sebastian, Spain
jyebes@vicomtech.es

Abstract—This work elaborates on the cycles involved in
developing ADAS applications which involve resources not
permanently available in the vehicles. For example, data is
collected from LIDAR, video cameras, precise localization, and
user interaction with the ADAS features. These data are
consumed by machine learning algorithms hosted locally or in
the cloud. This paper investigates the requirements involved in
processing camera streams on the fly in the vehicle and the
possibility of off-loading the processing load onto the cloud in
order to reduce the cost of the in-vehicle hardware. We highlight
some representative computer vision applications and assess
numerically in what network conditions offload to cloud is
feasible.

Keywords—ADAS, Cloud-Computing, Cloud Offload,
Computer Vision, GPU processing, Image processing, Deep
Learning, Driver Assistance, Autonomous vehicles

I. INTRODUCTION
Self-driving car technology is becoming a reality and the next
steps in its availability to consumers involve the reduction of
cost of in-vehicle processing hardware and legislative changes
to accommodate scenarios where a human is not behind the
wheel. This paper focuses on the first problem, wherein
Advanced Driver Assistance Systems (ADAS) processing
hardware required to run environment detection is still too
expensive for mainstream adoption. The usage of Graphical
Processing Units (GPUs) for computer vision has drastically
improved the execution time [1] however these are costly,
need to be automotive grade, and are energy hungry which
also drives the fuel consumption up.
Computer vision is a research field which attracted a lot of
attention in the recent years mainly due to its applications. The
pioneering applications were handwriting recognition where
the focus was on accuracy and has gradually transitioned to
object detection and more advanced pattern recognition that
mimics the human brains’ activity while performing certain
tasks. Medicine is another example where computer vision has
become an assistant to doctors in analysing x-ray imagery.
The most demanding applications are those in which the
output of the analysis has a hard time deadline – an object
detected too late can lead to self-driving cars’ inability to
avoid object and thus cause accidents. One of the most
challenging task is to develop computer vision capable to
drive both in highway scenarios, where the environment is
controlled by unidirectional movement and clear lane
markings, and an urban scenario where object movement is

omnidirectional and objects can vary from vehicles to road
furniture and buildings and more importantly, persons.
Matching patterns directly with the input signal has proven
unfeasible for real-time applications [2] and implementations
using neural network have achieved satisfactory processing
times [2] The implementation of neural networks can take
advantage of the GPU’s internal architecture, cutting the
execution time by an order of magnitude [2] compared to
Central Processing Units(CPUs). However due to cost
constraints explained earlier in the automotive scope, one
question arises, namely, whether or not some of the
computational efforts can be offloaded to external systems?
The only viable solution to move the data from the vehicle to
other systems for analysis is over a wireless technology
capable to support the required transfer speeds. It is only
technology such as 5G that promises to deliver the
architecture and transfer speeds capable of supporting such
offloading function.
This paper looks into some of the computer vision
applications that run in a vehicle, giving concrete numerical
examples of processing requirements. A numerical analysis is
then performed to investigate on the network requirements and
feasibility of offloading data to the cloud. This is done in the
context of the research and exploitation cycles involved in the
development of ADAS applications built on top of computer
vision.
The rest of the paper is organized as follows. Section II
highlights relevant works in the field, Section III gives
examples of ADAS applications that rely on video input to
obtain information about the environment and the driver,
Section IV gives a numerical analysis into the feasibility of
offloading some of the computer vision applications onto the
cloud, and Section V concludes the paper.

II. LITERATURE REVIEW
In [3] the authors investigate the effect of network delay onto
the deviation from course of car controlled from the cloud.
The work also proposes and architecture that employs Mobile
Edge Computing (MEC) as a means of reducing the latency
between the control entity (e.g. EUTRAN Node B) and the
vehicle. One of the important takeaway message from the
work in [3] is that a network delay over 150ms renders any
remote control as having a 40% deviation from trajectory,
which actually means that the network constraints should be
much lower than that value.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1042

In [4], the authors investigate the ADAS applications that can
be offloaded from the vehicle to MEC nodes which in their
work are located in the Road Side Units (RSUs), while the
network configuration is done using Software Define
Networking (SDN) concepts. Their work proves that the
network and compute architecture can be designed to cope
with the data volumes and latency requirements when the 5G
architectural features are employed. Similar conclusion is also
reached by other works, such as [5].
In [6] the authors highlight the capabilities of the 5G network
for mobility scenarios, where for a 28GHz 5G spectrum
allocation a vehicle travelling at 100 km/h can achieve a stable
connection of 1.2Gb/s which is the value we use in our
numerical analysis.
The general goal of computer vision is to extract some
interpretable and high-level information from matrices of
numbers, which are the images and sequences of them. The
current state-of-the-art has moved from classical approaches
[7] to Deep Learning pipelines [8] that have overwhelmingly
outperformed the first ones in many tasks, like ADAS-related
[2] which are treated in this work. This has been also possible
due to the existence of large annotated datasets and powerful
GPU computing hardware. However, allocating the required
systems for their deployment in vehicles imposes several
constraints and dedicated resources depending on the
application. These requirements and their relation to Deep
Learning trend for Real-Time applications in Automated
Vehicles are reviewed in [9], which also proposes a FPGA
implementation as an efficient alternative with some
restrictions and future trends.

III. ADAS DATA COLLECTION AND PROCESSING
REQUIREMENTS

ADAS is a field of research and strong industrial development
within the area of Intelligent Transportation Systems (ITS).
Mainly due to safety concerns towards reducing the number of
fatalities on the roads worldwide [1]. ADAS can be also seen
as a reduced and individually tackled set of challenges within
the scope of driverless vehicles [2]. Despite the early start of
exploratory work in autonomous vehicles in 1986, the area has
recently attracted a lot of interest from academy and large
amounts of investment from industry [2]. Most of the systems
can still be considered as separate dedicated modules for
specific ADAS functions with increased complexity along the
years. Nevertheless, there exist an important force integrating
several sensors in the car and working on the fusion of their
data streams. This imposes several requirements both on the
acquisition and processing of the data to obtain meaningful
patterns and semantics which are helpful for the ADAS and
driverless tasks.
Furthermore, recent advances on big data processing based on
Deep Learning approaches have pushed forward the current
state of the art. Deep Learning has proved to be a powerful
mechanism to learn complex data patterns yielding high
detection rates compared to traditional computer vision
algorithms. However, this has required the use of large

datasets and powerful hardware devices based on latest
advancements in GPU technology [8].

A. ADAS Computer Vision Applications
The following sections describe a set of representative ADAS
applications within the state of the art. They are focused on
camera and LiDAR sensors which are the ones with highest
bandwidth and computation requirements. They rely on 2D
and 3D modalities to perceive the environment surrounding
the vehicle and to monitor driver behaviour on board.

Multi-lane detection
Lane detection and modelling methods detect the presence of
lane markings in the scene and fit a road model to them to
determine the position of the ego-vehicle within its lane, the
presence and curvature of adjacent lanes, and the type of lane
markings. Historically, lane detection was the first effective
computer vision method used in the automotive industry for
ADAS. As a result, many approaches exist which provide
accurate results and low computational cost. Implementations
on standard ARM processors @1GHz can run in 10ms [10],
while multi-lane road segmentation approaches can take from
6 to 1200ms on GPU-enabled HW [11].

Object detection
This is the function which determines the position, size and/or
other spatial properties of specific types of elements in an
image. Typically, dictionaries for specific scenarios determine
which classes are detectable. In the context of ADAS, these
classes include elements such as car, pedestrian, bicycle,
truck, pole, traffic sign, etc. It is crucial to provide a reliable
detection as the car is sharing the road with many traffic
participants, particularly in urban areas. This task is
challenging because of the wide variety of object appearances
and occlusions caused by different objects or infrastructure in
the observed scene. Besides, there are illumination changes
and other artefacts depending on sensor modality. A
comprehensive review of object detection methods is provided
in [2]. On the one hand, 2D object detection is carried out on
images from cameras to find the location of bounding boxes
around the objects of interest. On the other hand, 3D object
detection is performed on the fusion of 3D point clouds from
LiDAR and images from cameras to find the location of cubes
around the objects in 3D space. This task requires
synchronized data streams from a LiDAR and one or more
cameras. There are several approaches to fuse the sparse data
from the LiDAR with colour images like these ones [12] [13].
A number of successful multi-class object detection
techniques have appeared in the recent years, thanks to the re-
birth of neural networks, in the form of deep learning models,
such as Faster R-CNN [14] or MobileNet [15], which are able
to provide extraordinary detection accuracy and robustness
and operate real-time in GPU-enabled platforms. For instance,
experiments carried out in Nvidia DrivePX2 having a dGPU
with 1152 cuda cores, we obtained inference times from 20-
35ms per 3Mpixels image using different SSD and Faster-
RCNN models. Other Deep Learning models for 2D object
detection in the literature [11] have reported times between

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1043

471 to 1476ms in Nvidia K40 (2880 cuda cores), between 80
to 300ms in Nvidia Titan X (3072 cores) and up to 4200ms in
Nvidia GTX 1050 (256 cores). These values depend on the
complexity of the neural network architecture and the size of
their input layers.

Scene semantic segmentation
This is a fundamental topic in computer vision in which each
pixel in the image is assigned a label from a predefined set of
categories [16]. They typically consist of road, sidewalk, sky,
vegetation, traffic signs, people, vehicles, etc. A sample image
in Figure 1 illustrates the case. Given the natural complexity
of urban scenes and depending on the number of selected
classes, this task requires high computation resources not only
during training to learn the patterns but also during inference
due to its pixelwise design. In the state of the art, DNN
approaches reported per frame delays between 33ms to
35seconds for Nvidia Titan X, depending on the proposed
model [11].

Figure 1: Example of semnatic segmentation

Visual odometry
In visual odometry the goal is to recover the full trajectory of a
camera system from images. A relative transformation is
estimated to represent the vehicle motion from one-time step
to the next one. This is achieved by registering two
consecutive frames based on matched salient features. The
current state of the art in this task can obtain good results in
standard CPUs without requiring further processing
capabilities [17].

Stereo reconstruction
Using a pair of cameras in a stereo setup, depth information
can be recovered from the 2D images, thus achieving a 3D
reconstruction of the scene. This process requires a good
camera synchronization and a previous calibration of the
stereo rig. Then, an expensive pixel-based or region-based
algorithm obtains the disparity between the images.

The algorithm finds correspondences between the two views
at the same point in time which are the projections of the same
physical surface in the 3D world. The challenge is to obtain a
disparity map as dense as possible to increase 3D accuracy
and this poses important computing requirements [18]. For
instance, different algorithms take from 410 to 1300ms in
Nvidia Titan X and 470ms in Nvidia GTX 1080 (2560 cores).

Driver monitoring
Fully autonomous cars will potentially require few
participation of humans in the driving tasks. However, as the
technology transitions to that final goal of autonomous
vehicles, there is still the need to monitor the attention state of
the driver [19]. Nevertheless, specific scenarios will require
driver engagement. Image-based systems are one of the best
options for monitoring the distraction and fatigue level of the
driver[20]. Usually these systems capture images from the
face (see Figure 2) and body and process them in two steps.
First, several relevant features are computed such as eyelid
activity, eye gaze direction, head pose or upper body pose.
Then, the driver attention state is evaluated using these
features. Modern driver monitoring systems are based on
different machine learning techniques, including deep learning
architectures such as MobileNet [14], SSD [21] and ResNet
[22] to extract the physiological features of the driver and
extract data patterns that indicate the attention level.

Figure 2: Example of DMS measurements

Numerical examples of GPU requirements per ADAS application

Table 1 gives some numerical examples from our experience
on running ADAS applications on GPU hardware. The table
also highlights the network requirements needed in order to
support a specific application. The compressed size of the
network stream was calculated using the height	 x	 weight	 x	
frame_rate	 x	 motion_factor	 x	 0.07, as it’s the case for the
H264 format. The motion factor value was 4, which is the
suitable for video input with high motion elements, such as
sports or, in our case, vehicles moving at speed.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1044

Table 1: GPU requirements versus execution time and network utilization

Application Image size Time per frame Processing Stream size
uncompressed (Mbps)

Stream size
compressed (Mbps)

2D Object detection 0.5 Mpix colour 30 – 4200 ms GPU cores 3072 to 640 300 3.5
Multi-Lane detection 0.5 Mpix colour 6 – 1200 ms GPU cores 3072 to 640 300 3.5
Scene semantic segmentation 2Mpix colour 60 – 35000 ms GPU cores 3072 to 640 1,200 14
3D object detection 0.5 Mpix image +

1M 3D points
300 – 1000 ms GPU cores 3072 to 640 396 99.5

Stereo reconstruction 2x0.5 Mpix 470 – 1300 ms GPU cores 3072 to 2560 600 7
Driver monitoring 0.3 Mpix 13 – 70 ms GPU cores 3584 to 256 180 2.1

IV. NUMERICAL ANALYSIS
Table 1 describes the relationship between runtimes and
processing hardware requirements as reported in the literature
and some of them also measured in our experiments.
Typically, the higher number of GPGPU cores, the lower
processing times. However, literature in Deep Learning
applied to ADAS is broad and many other aspects can
influence the delays: complexity and combinations of neural
network architectures, size of input layer, software platform
(Caffe, Tensorflow, Theano), network and/or hardware
optimizations, coding language (python vs C++), etc.

A. Parallel performance
As observed in Table 1, the execution time for certain
computer vision automotive applications can be small, which
would qualify as real-time image processing. A typical
threshold in the literature [2] is 30 to 40 milliseconds
processing time per frame, at a 25 frames per second video
rate. However, the execution time is mainly influenced by the
number of GPUs available for processing. Figure 3 depicts the
applications highlighted in Table 1 that rely on GPUs for
image analysis. Let us consider the slowest processing time
given the best hardware available is used, which in our case is
stereo reconstruction. The minimum time to process a frame
for this application is 470 milliseconds and an algorithm using
fused information from all video cameras and application can
only take decisions as fast as the slowest feed, which is 470
milliseconds in our case. Given that the execution time
depends on the number of GPU cores that we offer to a
specific application, we took an approach to determine the
number of cores that can be released and reused in other
applications, so as to delay the execution of other applications
up to the slowest application that runs on the best hardware.
We can thus observe from Figure 3 that more than 1000 cores
can be freed up and offered to other applications as the best
parallel performance is limited by the slowest performing
application. The calculations have been done with 3072 cores
available to each application and that would yield the
application’s fastest execution time, while the slowest
performance is computed at 640 cores per application. The
number of cores needed by a delayed application is calculated
through linear interpolation, and depicted in Figure 3.

B. Network requirements for cloud offload
We move now to discussing the implications and feasibility of
transferring some of the video feeds to external systems where

Figure 3: Processing time versus ADAS application. (Note: x-axis is

logscale)

processing is scaled up more easily and running costs are
smaller. One such external system is the cloud, where current
research trends have triggered cloud providers to offer GPUs
not only for video rendering but also for running neural
networks for machine learning algorithms. In this work we
investigate the network demands of the applications in Table
1. We considered the applications that need GPU for video
processing and considered the number of cores needed when
all these applications run on 3072 cores GPUs in the vehicle.
The question we want to answer is how many of these cores
are actually needed, given that the video content can be
uploaded to the cloud where processing is cheaper and faster,
however the size of the video feeds poses a real problem. In
Table 1 we observe the transfer rates required for both
uncompressed and compressed video feeds. The reason we
considered the compressed solution is that the combined size
of the video feeds is considerably larger than the capabilities
of current wireless and cellular technology. We show in
Figure 4 that the total number of GPUs required to run all the
applications is over 18944, and the figure also depicts the
number of cores that can be offloaded to the cloud, for
uncompressed video feeds. We have considered going up to
1Gbps upload speed for a connected vehicle, which can be
achieved in theory by 5G technology. The figure shows that
even at a high upload speed, only 2 applications can be
offloaded to the cloud for processing, and that without
considering the possible delays that can affect the local
decision making.
Figure 5 shows that the cloud can be really considered as an
offload solution as the required upload speeds are an order of
magnitude smaller than in the case of uncompressed video.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1045

Figure 4: Number of GPU cores that the cloud can support versus
the speed of the vehicle's network connection transferring
uncompressed video content. Secondary y axis shows number of
ADAS applications that the vehicle can offload to the cloud (i.e. red
line).

With speeds of 130 Mbps all 5 ADAS applications can have
their associated video feeds transferred to the cloud and
analysed there by GPUs. There are some drawbacks when
using compressed video, however where sufficient network
resources are guaranteed to vehicles, Figure 5 shows that it is
feasible to consider video processing offloading to the cloud.

Figure 5: Number of GPU cores that the cloud can support versus
the speed of the vehicle's network connection transferring
compressed video content. Secondary y axis shows number of ADAS
applications that the vehicle can offload to the cloud (i.e. red line)

Network latency can become another factor in the decision,
and current research trends showed that could-like compute
power can be brought closer to the end users by employing the
Edge Computing paradigm[3], [4], [6]. In case of utilizing a
cellular network infrastructure for connectivity, then the
mobile network architecture of the future will incorporate
Edge Computing functions [6]. This will have a great impact
on reducing the latency of the connection and some research
[6] even considered offloading decision-making to servers
running on the edge of the cellular network, at one-hop
network distance from the actual vehicle.

V. CONCLUSION
This paper focused on ADAS applications which involve the
aid of computer vision breakthroughs for processing a large
volume of video input captured from cameras capturing both
the interior and the surrounding environment of a vehicle.
These applications need GPUs for near real-time processing,

so as to allow the output of the processing to be used by self-
driving algorithms. The paper gives examples of ADAS
applications and performance characteristics and we showed
that with the help of 5G speeds some of the ADAS
applications can be offloaded to the cloud. This is an ongoing
investigation, and our future work will focus on incorporating
more factors such as network latency and more varied
benchmarks for computer vision performance.

ACKNOWLEDGMENT
This work has received funding from the European Research Council

(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no. 690772, project VI-DAS).

REFERENCES
[1] J. Fung, “Computer Vision on the GPU,” GPU Gems, vol. 2, pp. 649–666, 2005.
[2] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer Vision for Autonomous

Vehicles: Problems, Datasets and State-of-the-Art,” 2017.
[3] K. Sasaki, N. Suzuki, S. Makido, and A. Nakao, “Vehicle control system

coordinated between cloud and mobile edge computing,” in 2016 55th Annual
Conference of the Society of Instrument and Control Engineers of Japan, SICE
2016, 2016.

[4] D. J. Deng, S. Y. Lien, C. C. Lin, S. C. Hung, and W. B. Chen, “Latency Control in
Software-Defined Mobile-Edge Vehicular Networking,” IEEE Commun. Mag., vol.
55, no. 8, 2017.

[5] S. Nunna et al., “Enabling Real-Time Context-Aware Collaboration through 5G and
Mobile Edge Computing,” Proc. - 12th Int. Conf. Inf. Technol. New Gener. ITNG
2015, pp. 601–605, 2015.

[6] J. Liu, J. Wan, B. Zeng, Q. Wang, H. Song, and M. Qiu, “A scalable and quick-
response software defined vehicular network assisted by mobile edge computing,”
IEEE Commun. Mag., 2017.

[7] J. Javier Yebes, L. M. Bergasa, and M. Á. García-Garrido, “Visual object
recognition with 3D-aware features in KITTI urban scenes,” Sensors (Switzerland),
vol. 15, no. 4, pp. 9228–9250, 2015.

[8] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[9] I. T. U. Journal, I. C. T. Discoveries, and S. I. No, “RECONFIGURABLE
PROCESSOR FOR DEEP LEARNING IN AUTONOMOUS VEHICLES Deephi
Tech , Beijing , China Institute of Microelectronics , Tsinghua University , Beijing ,
China Department of Electrical Engineering , Stanford University , Stanford CA ,
USA,” no. 1, pp. 1–13, 2017.

[10] M. Nieto, A. Cortés, O. Otaegui, J. Arróspide, and L. Salgado, “Real-time lane
tracking using Rao-Blackwellized particle filter,” J. Real-Time Image Process., vol.
11, no. 1, pp. 179–191, 2016.

[11] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous Driving? The
KITTI Vision Benchmark Suite,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[12] B. Li, T. Zhang, and T. Xia, “Vehicle Detection from 3D Lidar Using Fully
Convolutional Network,” 2016.

[13] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner, “Vote3Deep: Fast
Object Detection in 3D Point Clouds Using Efficient Convolutional Neural
Networks,” 2016.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 39, no. 6, pp. 1137–1149, 2017.

[15] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications,” 2017.

[16] M. Cordts et al., “The Cityscapes Dataset for Semantic Urban Scene
Understanding,” 2016.

[17] J. Zhang and S. Singh, “Visual-lidar Odometry and Mapping: Low-rift, Robust, and
Fast Localization,” Icra, pp. 393–398, 2015.

[18] Z. Liang et al., “Learning Deep Correspondence through Prior and Posterior Feature
Constancy,” 2017.

[19] J. Gonçalves and K. Bengler, “Driver State Monitoring Systems– Transferable
knowledge Manual driving to HAD,” in Proceedings of the 6th International
Conference on Applied Human Factors and Ergonomics, 2015, vol. 3, no. Ahfe, pp.
3011–3016.

[20] Y. Dong, Z. Hu, K. Uchimura, and N. Murayama, “Driver inattention monitoring
system for intelligent vehicles: A review,” IEEE Trans. Intell. Transp. Syst., vol. 12,
no. 2, pp. 596–614, 2011.

[21] W. Liu et al., “SSD: Single shot multibox detector,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9905
LNCS, pp. 21–37, 2016.

[22] S. Wu, S. Zhong, and Y. Liu, “Deep residual learning for image steganalysis,”
Multimed. Tools Appl., pp. 1–17, 2017.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1046

