ISBN 978-90-827970-1-5 © EURASIP 2018

2018 26th European Signal Processing Conference (EUSIPCO)

Estimating Faults Modes in Ball Bearing Machinery
using a Sparse Reconstruction Framework”

Maria Juhlin*, Johan Swird*, Marius Pesavento®, and Andreas Jakobsson*
*Div. of Mathematical Statistics, Lund University, Sweden,
fCommunication Systems Group, Technische Universitit Darmstadt, Germany

Abstract—In this work, we present a computationally efficient
algorithm for estimating fault modes in ball bearing systems.
The presented method generalizes and improves upon earlier
developed sparse reconstruction techniques, allowing for detect-
ing multiple fault modes. The measured signal is corrupted with
additive and multiplicative noise, yielding a signal that is highly
erratic. Fortunately, the damaged ball bearings give rise to strong
periodical structures which may be exploited when forming the
proposed detector. Numerical simulations illustrate the preferred
performance of the proposed method.

Index Terms—Ball bearing systems, sparse reconstruction,
convex optimization, ADMM

I. INTRODUCTION

Ball bearings are an essential part of many mechanical
systems as they can carry high loads without significant energy
being lost to friction. For optimal performance, minimizing
the friction, the balls should not have any direct contact with
the metal cage, running instead on a thin film of oil. It is
important that such optimal conditions are preserved, as any
disruptions, such as, for example, an imbalanced metal cage
or a dirty oil film will subject the ball bearings to much wear
and tear, and due to the rapid motion of the balls, the resulting
degradation can occur swiftly. Malfunctions in the machinery
can also have a large and costly business impact; as a result, it
is important to identify and rectify malfunctions in the bearings
at an early stage, before the errors start to affect the machinery,
so that maintenance can be scheduled without unnecessary
production halts. As ball bearings are often an integrated part
of the machine, detecting malfunctions at an early stage is
difficult, as direct inspection of the ball bearings is usually
not feasible without stopping the machine. As a result, the
development of non-invasive methods for error detection is
important (see, e.g., [1]-[4]). Because of the rotational nature
of ball bearings, disruptions will manifest as harmonically
related ringings in the vibrational response of the ball bearing
system. Although malfunctions can result for various reasons,
these can roughly be divided into three groups of problems.
As noted in [1], these groups of malfunctions give rise to
distinct error patterns in the resulting vibrational signal. As
a result, by estimating the fundamental frequencies and the
harmonic structure in the vibrational response, one may detect
and determine different kinds of problems with the ball bearing
system. As ball bearings are an integrated part of the machine,
the individual vibrational signals are generally not available
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from measurement, and instead a composite signal resulting
from the entire machine is what may be measured, including
various forms of engine vibrations and noise.

Due to the strong presence of noise and other forms of
tonal-like interference, traditional techniques for estimating
fundamental frequencies of harmonically related tones (see,
e.g., [5]) will have difficulties in yielding reliable estimates,
necessitating the development of techniques tailored to the
expected structure of the vibrational signal. Reminiscent to
the pitch estimation problem for audio signals (see, e.g., [6],
[7]), one may reduce the problem of tonal interference as
well as exploit the harmonic structure of the expected signal,
by utilizing both the sparse structure of the signal and the
group sparse structure resulting from the harmonics. Such an
effort was made in [2], where some different approaches for
identifying error patterns from ball bearing signals were devel-
oped and compared, including a group sparse pitch estimator.
The here proposed method expands on this approach and first
estimates the harmonically related sinusoids in the signal, and
then, in a second stage, uses this knowledge to search for the
other distinct error patterns that may be present in the signal.
Furthermore, a computationally efficient Alternating Direction
Method of Multipliers (ADMM) is derived which dramatically
decreases the computational cost as compared to off-the-shelf
convex solvers, such as [8]. Using simulated data, we examine
the performance of the resulting estimator and compare with
the results obtained using the group sparse estimator suggested
in [2], clearly indicating the preferable performance of the
proposed method.

II. THE VIBRATIONAL SIGNAL MODEL

The vibrational response of a ball bearing system is not di-
rectly measurable, with the signal of interest being modulated
with an unknown modulation that has to be removed before
further processing [1]. For completeness, we begin by briefly
reviewing how this is done. Typically, the demodulation of a
signal with an unknown modulation is formed by computing
the envelope of the corresponding discrete-time analytic signal
[9]. This process causes the signal components to be mixed
together, creating many spurious peaks, generally making it
difficult to extract the signal of interest. However, as the
vibrational response consists of harmonically related tones,
this underlying structure will be preserved. In general, the
noise-free envelope of the vibrational signal consisting of P
harmonically related tones generated, e.g., by balls periodi-
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cally running over a crack on the ring with frequency wy,
may be well modeled as [1], [2]

p
2(tn) =Y aycos(wolty + o) (1)
=1
where t,, denotes the nth time sample, ay, wo, and ¢, € [0, 27)
the amplitude, frequency, and the phase of the rotational
system, respectively. Due to the rotation of the bearing with
frequency w,. the ball bearing ring (if not fixed) periodically
moves into and out of the pressure zone resulting in a
modulation of the vibration signal z(t¢,) with a harmonic
signal. The modulation of the signal implies that the measured
signal can be expressed as
P
g(tn) = Z apare cos(wolty, + @) cos(wety, + ¢c)  (2)
=1
where ., w,, and ¢. denote the unknown modulation gain,
frequency, and phase, respectively. The envelope of the ana-

lytical signal of g(t,,), denoted by y(t,) = |ga(t,)|*, can thus
be written as
o2 o
y(ty) =3 (aiaj cos (wo(j — )tn + (05 — ¢3))+
P P
S5 aia cos (woli — j)tn + (6 — 7))+
i=1 j=1
2a;ai5 cos (wo(j + i)tn + &j + 451)) S

The demodulation procedure ensures that the resulting signal
is independent of the unknown modulation, but also causes the
harmonic structure to be extended with 2P overtones, being
formed as sums of these harmonics. The result emphasizes
the importance to include the full harmonic structure when
devising an algorithm aimed at retrieving the frequencies'. To
simplify our notation, we proceed to express the demodulated
noise-free ball bearing vibrational signal suffering from rota-
tional imperfections as (see also [2])

L L My
y(tn) — Z ak;eiwokthr’ikd) + Z Z ﬁkeiwgktniiAvnt7,,+¢ki
k=1 k=1m=1
M
+ Z /BkeiAmtn-&-gbki (4)
m=1

In this more general formulation, the response also allows for
malfunctions that cause the presence of L harmonic overtones
of the system frequency, each with a linearly increasing
phase?. Some forms of imperfections, for instance due to

!'To simplify the presentation, the modulation signal has here been assumed
to be sinuoidal; in real application, it is worth noting that this modulation is
often better modelled using a low-order autoregressive model. This will have
the effect of further spreading the signal power over the band, although the
modulated frequencies will still appear shifted in the same way. This effect
is also visible in Figure 1, where the low power noise component is seen to
be shaped by the autoregressive modulation.

2It is worth noting that, occasionally, some of these overtones, including
the actual fundamental frequency, may be missing, in which case the corre-
sponding amplitude, o, € R, is zero.
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Fig. 1. The spectrum of a demodulated ball-bearing system. The figure shows
the harmonically related groups of spectral peaks resulting from imperfections
in the system, causing modulation components for each harmonic.

a radial load [1], will also cause a distinct error pattern
in the rotational information, causing the presence of the
frequency modulation detailed in the second term of (4), where
A denotes the frequency modulation offset caused by the
rotational imperfections, with M}, being the number of such
modulations for tone k. Some such modulation components
may be missing, causing the corresponding modulation ampli-
tudes, 5i € R, to be zero. Roughly, the error patterns resulting
from malfunctions may be separated into two different groups;
multiples of the fundamental frequency, and multiples of the
fundamental frequency combined with sidebands around each
harmonic [1]. As one is restricted to measuring a composite
signal that can include, among other things, vibrations from the
engine and other mechanical parts, the identification problem
is twofold: firstly, one has to determine which of the signal
components that belong to the rolling bearings, and then,
secondly, identify the possible error pattern present. Figure
1 illustrates the periodogram of a typical demodulated ball-
bearing signal. The signal, formed using (1) prior to modula-
tion, contains a single harmonical vibration signal, consisting
of a fundamental frequency with L. = 4 harmonics and four
sidebands (M = My = 2,Vk = 1,..., L), centered around
each harmonics. The vibrational signal should thus contain
2LM = 16 components. However, as can be seen from the
figure, due to the demodulation step, the demodulated signal
contains far more components, although the harmonic structure
can still be seen, but now being extended to include 2L
additional harmonics.

III. PROPOSED METHOD

We proceed to introduce the proposed estimator for ball
bearing signals. We start by separating the main problem in
to two parts. The first part is to determine the harmonically
related parts in the signal. In the second step, we utilize this
information to determine the presence of any sidebands. In
order to determine the harmonically related frequencies in (3),
we begin by forming a grid over the fundamental frequencies,
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Fig. 2. The figure illustrates the activated components of a typical signal
using the estimator in [2].

ranging from wyi, t0 Wmaz, With length G. Furthermore, let
A denote a dictionary matrix containing a large set of potential
candidate fundamental frequencies and their corresponding
harmonics, such that

A=[ A Ac ] 5)
Ay=[ag g, Lo | ©)
agy = [ eiwelts eiwgltn }T %)

where ()T denotes the transpose and Ly,x an upper limit on
the expected number of harmonics. The problem of determin-
ing the fundamental frequencies may then be expressed as

G
S 1
minipize 515 — Ax|F + Al +93 Il ®

where s = [ s(t1) s(tw) ]T, with x denoting the
amplitude vector for each candidate frequency, corresponding
to each column in A € CN*GLmx and x4 corresponds to all
amplitudes for group g, whereas A and ~ are user determined
regularization parameters governing the overall sparsity and
the group sparsity of the solution, respectively. The latter
penalty enforces the group sparse structure ensuring that only
a few candidate fundamental frequencies are retained in the
solution, whereas the former penalty strives to minimize the
overall number of components in the solution. As (8) is a
convex optimization problem, the solution may be found using
a standard off-the-shelf solver such as SDP3 [10], although
such solvers generally become computationally cumbersome
as the problem dimension grows.

To alleviate this problem, we will instead exploit a solution
formed using an ADMM (see, e.g., [11]). The ADMM works
by separating the original problem into smaller and simpler
problems which are solved separately. To this end, we split the
original variable x in (8) into two separate variables, denoted
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Fig. 3. The figure illustrates the activated pitch groups of a typical signal
using the proposed estimator.

x and z, forming
1 G
minimize Slls = Ax[[3+ Mlzlls + 7Y 1zl
g=1
subjectto x =1z )

To derive the steps in the ADMM method, one then forms the
augmented Lagrangian of (9), i.e.,

1
L(x,2) =5lls = Ax|[3 + Al|zl[1+

G
p
v llzglle + Sllx—z+ulll  10)
g=1
where p denotes the step size and u the (scaled) dual variable.
In the first step of the ADMM algorithm, one solves (10) for

the x variable, keeping the other variables fixed, i.e,.
xEtD = (AHA 4 1) (AHs +p(a® — u(k>)) 11

where (-)(*) denotes the kth iteration. Since (10) is not
differentible for all z, one requires the use of subdifferential
calculus to find the solution (see also [12])

2 = (S(x(gk'H) +ul, A/p)w/p) (12)
forg: 17,,,7G, where
max(||v|[2 — &, 0)
_ 1
S (v, K) max([v]}a —7.0) + (13)
Sy = M0 14

max(|v| — k) + &

with © denoting the element-wise multiplication. Finally, one
updates the (scaled) dual variable using

uFtD) = (k1) _ (k1) 4 (k) 15)
The steps in (11)-(15) are iterated until sufficient convergence
has been achieved. The ADMM algorithm converges under
very mild assumptions, such as the terms in (9) have to be
closed, proper, and convex functions, and that the augmented
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Algorithm 1 Identifying wy and A

1: Let G be the number of estimated groups in the solution
of (8) and L be the number of harmonics for each group.

2. if G =1 then

3:  Set Wy equal to the fundamental frequency of the found
group. This will yield no prior information on A.

4: else if G = 2 then
Form & and set A = miné and &g to the fundamental
frequency of the remaining group.

6: else

7. Form 4. If there are any suitable candidates in &, set A
to the § with the most occurrences and set Wy primarily
as the frequency with most Js equal to A or, secon-
darily, to the fundamental frequency corresponding to
the group with corresponding to max L. If there are no
candidates in ¢ that are suitable for A, then no prior
information on A is available. Then, set wy equal to
the fundamental frequency corresponding to the group
with max L harmonics.

8: end if

Lagrangian has a saddle point, both being fulfilled in this case,
and has been shown to produce solutions with high accuracy
after only a few iterations [11], [13].

One ambiguity that arises in the estimation is the so-
called halfling problem, which results from the fact that if
the true fundamental frequency is wp, both wg and wp/2
will fit the frequency structure, and will therefore be valid
solutions. However, this results in the selection of a too small
fundamental frequency and thus needs some treatment. To
this end, we exploit the idea presented in [14], and solve the
ADMM multiple times, each time using weights to update the
7 arameter. These weights are in each iteration ¢, defined as

+1 =1/ (| T, 1\ +€), where x, 1 denotes the first element
in the vector x, and € is a small number, typically around
104, added to avoid numerical problems. Since the element
in x corresponding to wp/2 should be small, the corresponding
group will be penalized; the algorithm will thus prefer to
choose the group that has wp as its fundamental frequency.
Similarly, due to both the additive and the multiplicative noise,
the spectrum is not really sparse. This makes the method
sensitive to the choice of A and, in particular, v, which
governs the group sparsity in the solution. To alleviate this,
we here make use of the similar reweighting formulation
described in [15]. To this end, we form a second weighting
vector, Wy = 1/(||x4]l2+¢€), for ¢ = 1,...,G, which is
applied to each group, respectively. The ADMM is then rerun,
where in each iteration w, are updated, until convergence,
which is reached after only a few iterations. To speed up the
computation, one may warm start the ADMM in each iteration
with the previously found solution.

The output from the ADMM determines which groups
containing harmonically related sinusoids that are present in
the signal, and is used to identify the main harmonic, wy.

Since the first sideband, corresponding to the third sum in (4),
also exhibits a harmonic structure, though often weaker since
it contains less overtones than the main harmonic component,
it often shows up in the solution to (8). When this is the
case, one may use this information to form a prior on the
sideband structure, although one still needs to identify any
present noise components. To this end, one may utilize the
fact that the sideband frequency A has an upper bound of
half the frequency of wy, and the fact that potential sidebands
are always formed at equal inter-peak distances from their
corresponding wy harmonic [2]. The algorithm for forming the
prior on A and determining wy can be divided into three cases
depending on the number of frequency groups identified by the
ADMM, and is summarized in Algorithm 1. The successive
inter-peak distances, d, are formed as the distances between
successive peaks, with the first inter-peak distance, d;, being
the distance between zero and the first peak, and the last one
being d;45¢ = 00. If no such prior-information is attained from
the solution to (8), one has to search a broader area around
the found harmonic component. In this paper, we have defined
this area to be [2/3wy, 4/3wy).

To determine the presence of any sidebands, we propose to
again utilize the ADMM algorithm, this time using a differ-
ent group structure. Define the grid over possible sideband
frequencies as A with size (), and the maximum allowed
number of sideband harmonics as M. Furthermore, let wy be
the estimated fundamental frequency for the main harmonic
component and let L be the estimated number of harmonics.
One may then form a new dictionary for the sideband as
DQ ] (16)

D,; ]

dg—1 dgen
e(Lo+mA)t, }

dq,é,M ]

e(ZwD +mA)t T

[ q,4,—M
q Lm [
We again solve (8), this time with D as dictionary matrix.
The estimated sideband is then selected as the group with
the largest norm. Finally, we re-estimate the amplitude for all
found sinusoids using the least squares
NS R
%5 = (D”D)  (Ds) a7
where D denotes the dictionary with columns corresponding
to the found frequencies. A sideband is deemed to be present if
the corresponding group has at least half the energy compared
to the main harmonic component. Thus, a sideband is deemed
to be present if
Ixalls > 7lxoll1, (18)
where xa and x( denote the amplitudes for the group corre-
sponding to the sideband and the main harmonic component,
respectively, and 7 is a predefined threshold, here set to 7 =

0.5. The resulting method, termed the MAD (MAlfunction
Detection) algorithm, is summarized in Algorithm 2.
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Fig. 4. The figure illustrates the rate of correctly identified error patterns for
different values of o~!, computed using 100 Monte Carlo simulations. For
a signal with sidebands and one without sidebands.

IV. NUMERICAL EXAMPLES

To illustrate the performance of the suggested method, we
proceed to examine the method’s performance using simulated
ball bearing data, having a harmonic frequency at 133 + ¢;
Hz. The data is simulated both with and without a sideband
disturbance at 23.24 + ¢ Hz, where €1,¢2 € UJ[0,0.5] are
additive noise components added to force the frequencies to
lie off-grid. The signal is corrupted by first a multiplicative
noise in the form of a second order autoregressive filter with
coefficients [1,—0.6119,—0.9801], and then by an additive
zero-mean Gaussian noise with variance o2.

An example of the resulting signal spectrum is shown in
Figure 1, illustrating the large number of spectral compo-
nents resulting from the demodulation procedure. As is clear
from the figure, it is non-trivial to extract the corresponding
components from the resulting signal without exploiting the
structure of the signal. Figures 2 and 3 illustrate the sparse
representations of the harmonic frequency estimates resulting

Algorithm 2 The MAD algorithm

I Input: xO =2 =u® =0, p=1,A\v>0k=1,
ay = 0.3, o, = 0.4, and A formed from (5)-(7).

2: Using ADMM, solve (8) using reweighting w, and w,.

3: Form D from (16).

4: Using ADMM, solve (8) using reweighting w,, and with
ay =0.05and o, = 0.1, .

5: Reestimate the sinusoidal amplitudes using (17)

6: Decide if the sideband is present in the signal using (18).

the MAD algorithm improves rapidly for both signal types,
and for 0=! = 0.02 it is between 87-91%. The reason for
this is that the energy content of the signals in the two cases
differs, and the choices of A and v have not taken this into
consideration. Here, we have selected A = a,||By]||~ and
v = a,||BH y||, where B denotes the dictionary matrix and
y the signal.
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