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Abstract—Graph theory is a branch of mathematics which
is gaining momentum in the signal processing community due
to their ability to efficiently represent data defined on irregular
domains. Quantifying the similarity between two different graphs
is a crucial operation in many applications involving graphs, such
as pattern recognition or social networks’ analysis. This paper
focuses on the graph similarity problem from the emerging graph
Fourier domain, leveraging the spectral decomposition of the
Laplacian matrices. In particular, we focus on the intuition that
similar graphs should provide similar frequency representation
for a particular graph signal. Similarly, we argue that the
frequency responses of a particular graph filter applied to two
similar graphs should be also similar. Supporting results based
on numerical simulations support the aforementioned hypothesis
and show that the proposed graph distances provide a new tool
for comparing graphs in the frequency domain.

I. INTRODUCTION

Graphs are a convenient mathematical representation of
networks. Relevant examples of networks with a strong impact
on our daily lives include transportation systems (train lines or
roads where graph edges represent streets and graph vertices
represent road crossings), communications networks (tele-
phone, computers, etc), social networks (LinkedIn, Facebook,
etc) and biological networks (gene-to-gene, functional brain
networks, etc), to name a few.

This paper focuses on the problem of comparing two
different graphs and, in particular, on the definition of a new
similarity metric to quantify the frequency domain similarity
between two graphs. Having proper metrics to evaluate graph
similarity is of high relevance in a number of applications,
such as biological network comparison, web searching en-
hancement tools, and to match chemical structures. Focusing
on conventional time-domain works, graph isomorphism has
been widely investigated to claim that two graphs are identical,
i.e. contain the same number of vertices which are connected
in the same way [1]. While graph isomorphism provides a
binary answer to the graph similarity, the emerging concept
of graph similarity has been investigated for the last decade
to provide a better assessment of the resemblance among
graphs [2]. Generally speaking, the available literature on
graph matching quantifies the difference between two graphs
by the “cheapest” sequence of operations needed to transform
one of the two graphs into the other (e.g. adding/deleting

nodes or edges). However, the decision on the cost assigned
to each operation is not trivial and has a deep impact on the
final outcome. Alternative inexact graph matching techniques
consider the use of a “graph distance”, for instance [3],
which collects all information related to a particular node in a
signature vector and uses a node-assignment combined with a
modified Euclidean distance to quantify the graph similarity.
In addition, many of the state-of-the-art graph and sub-graph
matching approaches are not robust to noisy and incomplete
graphs. Despite the numerous works in the topic, a unifying
and robust graph matching solution capable of comparing two
graphs has not been yet provided.

The focus of this paper in on the case where the graphs
to be compared have known node correspondence, i.e. they
consist of the same number of nodes and those are aligned.
One of the most relevant works in this area is reported in [4],
where the pairwise node affinities are computed and compared.
However, the proposed algorithm requires the computation of
a node-by-node affinity, and the outcomes strongly depend on
the method chosen to compute such affinity scores. In addition,
the proposed metric to quantify the affinity scores requires
matrix inversion and the definition of a constant to account
for the influence between neighboring nodes.

In this paper we propose a novel graph similarity framework
based on the spectral graph theory. In recent years, there has
been significant contribution from the signal processing com-
munity towards the graph processing theory, by extrapolating
spectral processing properties into the graph framework [5],
[6]. Here, we particularly focus on the spectral decomposition
of the graph Laplacian matrix which is known to bridge
the discrete graph representation with the continuous spectral
domain. In this context, we develop a novel graph Fourier
based framework that allows us to obtain different methods
for quantifying the similarity between two different graphs. In
particular, we present a set of procedures which are evaluated
and compared with [4] via numerical simulations.

The remainder of this paper is organized as follows. Section
II introduces the graph notation and reviews the concept of
graph Laplacian matrix (Section II-A) as well as the graph
similarity metric proposed in [4] (Section II-B). After that,
Section III presents the Laplacian matching framework and
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states the different proposed graph distances. Finally, support-
ing numerical results are provided in Section IV, and Section
V states the conclusion.

II. PRELIMINARIES: GRAPHS AND SIMILARITY

Let us consider a finite-size graph G = (N , E ,W), consist-
ing of a set of vertices N = {1, 2, . . . , N}, a set of edges
connecting the vertices E ⊂ V × V , such that (n,m) ∈ E
if and only if vertex n is connected to vertex m, and the
corresponding edge weights W ⊆ N × N . If the graph G is
undirected (which is the focus of this work), then the weight
wnm connecting the edge (n,m) is the same as the weight
wmn connecting the edge (m,n).

Any graph can be equivalently represented by its associated
adjacency matrix A ∈ RN×N , whose entries are defined as

Anm =

{
wnm if (n,m) ∈ E
0 otherwise.

(1)

Clearly, the matrix A accounts for the structure of the graph
in the sense that if (n,m) /∈ E , then Anm = 0.

A. Graph Laplacian

For undirected graphs, the elements of the Laplacian matrix
L ∈ RN×N associated with G are defined as

Lnm =


deg(n) if n = m

−wnm if (n,m) ∈ E
0 otherwise,

(2)

where deg(n) stands for the degree of vertex n, which is
defined as deg(n) =

∑
wnm. Like the adjacency matrix A, the

Laplacian L is a sparse matrix that account for the structure of
the graph. In fact, upon defining the degree matrix D ∈ RN×N

as a diagonal matrix which contains information about the
degree of each vertex, the Laplacian matrix can be alternatively
written as L = D−A.

The Laplacian matrix is a symmetric, real-valued and sparse
matrix. It can also be shown that the Laplacian is always
positive semidefinite (PSD) –note that the definition in (2)
guarantees L to be diagonal dominant–, and that the all-
ones vector is an eigenvector whose associated eigenvalue
is zero; i.e., by construction we have that L1 = 0. In fact,
the number eigenvalues of L that are zero (as well as the
number of eigenvalues with very small magnitude) provide
key information about the underlying structure of the graph,
including the number of components (and connectivity) [7].

While the definition in (2), also referred to as combinatorial
Laplacian, is the most widely used in the literature, alternative
definitions for the Laplacian exist. These include the normal-
ized Laplacian, the random-walk Laplacian, and the diagonally
scaled Laplacian [7].

B. State-of-the-Art: Delta-Connectivity

D. Koutra et al. proposed in [4] the “Delta-Connectivity”
metric to asses the similarity of two unweighted and aligned
graphs (i.e., with known node correspondence). Essentially, the
proposed algorithm first computes the pair-wise node affinities
or influence of the two graphs and, in a second step, compares
them using the root euclidean distance, also known as Jeffries-
Matusita distance. However, there exists many different ways
to characterize the pair-wise node affinities and the decision
of which one to use deeply affects the similarity result. In [4],
the Belief Propagation algorithm is proposed, which computes
the affinity matrix S as follows

S =
[
I + ε2D− εA

]−1
, (3)

where I, A and D are the identity, adjacency and degree
matrices, respectively. The complexity of (3) is of significance,
particularly for high-dimensional graphs, as it involves a ma-
trix inversion. In addition, the algorithm requires the definition
of the constant ε, which captures the amount of influence
between neighboring nodes to be considered.

III. PROPOSED GRAPH FOURIER TRANSFORM METRICS

We seek a suitable similarity function for aligned graphs
(weighted or unweighted) which effectively captures the spec-
tral difference between aligned graphs with reduced complex-
ity. Since a well-established theory on the spectral behavior
of the graph Laplacian exits, we propose to focus on con-
ventional distance metrics that can be applied to the spectral
decomposition of the Laplacian matrices associated with the
graphs.

Before moving into details, let us review the properties of
a metric ϑ(A1,A2) to qualify as a distance:

To be always non-negative: ϑ(A1,A2) ≥ 0.
To be zero if and only if we are comparing the same
graph: ϑ(A1,A2) = 0 if and only if A1 = A2.
To be symmetric: ϑ(A1,A2) = ϑ(A2,A1).
To satisfy the triangle inequality: ϑ(A1,A3) ≤
ϑ(A1,A2) + ϑ(A2,A3).

In the context of graph signal processing, given the eigen-
decomposition of the Laplacian matrix

L = Vdiag(λ1, ..., λN )VT (4)

a concept of particular relevance is that of the Graph Fourier
Transform (GFT). As in classical signal processing, the GFT is
used to provided an alternative representation for graph signals
and graph filters and, equally important, transforms filtering in
the graph domain into multiplication in the frequency domain;
see, e.g, [8]. A noticeable difference relative to classical signal
processing is that the GFT for signals is not the same than the
GFT for filters [9]. In particular, given a signal x ∈ RN the
graph Fourier transform that maps x to the N -dimensional
frequency domain is given by the square orthonormal matrix
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V. Differently, given a vector of filter coefficients h ∈ RN ,
the graph Fourier transform that maps h to the N -dimensional
frequency domain is given by the square Vandermonde matrix
Ψ, where [Ψ]i,j = λj−1

i [9].
Our contribution is then to use these two GFT matrices to

propose new graph similarity matrices. In particular, consider
two graphs G1 and G2 described by L1 and L2, respec-
tively. Associated with each of the Laplacians, we can define
(V1,Ψ1) as well as (V2,Ψ2). Using those, we propose the
following two distances

dGFT−S(G1,G2) = ϑ(V1,V2) (5)

dGFT−F (G1,G2) = ϑ(Ψ1,Ψ2). (6)

Intuitively, if two graphs G1 and G2 are close when using the
distance in (5), it means that the frequency representation of
signals defined on those graphs is similar. From a different per-
spective, having dGFT−S(G1,G2) small means that matrices
L1 and L2 are close to be simultaneously diagonalizable, and,
therefore, that the Laplacian L1 can be well approximated as
a matrix polynomial of L2, and viceversa (see [9] for a related
problem).

On the other hand, if two graphs G1 and G2 are close under
the distance in (6), it means that the frequency representation
of filter taps associated with a filter defined either on L1 or
L2 are similar. In other words, if one designs the coefficients
of a graph filter to obtain a desired frequency response (say
low-pass) on L1, the same filter coefficients will also give rise
to a low-pass response on L2 provided that dGFT−F (G1,G2)
is small.

For the function ϑ(., .), we consider the following distances:

Frobenius distance: Sometimes also called the Euclidean
norm for matrices, is the extension of the usual distance
applied in the vector space to the matrix space. The
Frobenius distance is defined by,

dfro(A1,A2) = ‖A1 − A2‖F =√√√√ N∑
n=1

N∑
m=1

∣∣∣[A1]n,m − [A2]n,m

∣∣∣2. (7)

This is the simplest and fastest to compute distance,
involving a complexity O(N2) resulting from simple
point-wise multiplications and addition of matrix entries.
This complexity can be further reduced by exploiting the
inherent sparsity in A1 and A2. However, the Frobenius
distance treats the matrices simply as vectors and, thus,
completely disregards other properties that A1 and A2

may satisfy, such as the inherent semi-definite property
of the Laplacian matrices.
Jeffries-Matusita distance: Similar to the Frobenius
distance, but it generally provides better results since it
introduces the square root of the matrix elements, which

makes the distance more sensitive to small differences.
The Jeffries-Matusita distance is defined as follows,

dJM(A1,A2) = ‖A1 − A2‖JM =√√√√ N∑
n=1

N∑
m=1

∣∣∣√[A1]n,m −
√
[A2]n,m

∣∣∣2. (8)

The computational complexity of the Jeffries-Matusita
distance is yet driven by the square operation, i.e. O(N2).

One can also consider computing the similarity metric
directly to the Laplacian matrices, which are known to account
for the local structure of the graph. This is,

dGFT−L(G1,G2) = ϑ(L1,L2) (9)

Given the positive-semidefinite characteristics of Laplacian
matrices, we suggest to use in this case the geodesic dis-
tance, which matches better curved surfaces instead of plannar
measurements. Note that the manifold of positive-semidefinite
matrices is a convex cone structure and thus, plannar distances
like the Frobenius norm fail in capturing the true distances.
The Geodesic distance [10] is defined as,

dgeo(A1,A2) =

√ ∑
1≤i≤N

|log λi|2, (10)

where λ1, λ2, . . . , λN are the generalized eigenvalues of the
two matrices, i.e.,

A1υn = λnA2υn, n = 1, . . . , N, (11)

with υ1,υ2, . . . ,υN being the generalized eigenvectors. The
computational complexity of (10) accounts to O(N3) as it
involves a Generalized Eigenvalue Decomposition (GED).

However, the Laplacian matrix associated with sparsely
connected graphs tends to have several eigenvalues of very
small magnitude. The computation of the eigenvectors is thus
very sensitive to matrix singularity and, as a consequence,
cannot be directly applied to Laplacian matrices.

To bypass the the ill-conditioned behavior of the Laplacian
matrices, we propose the to use a “Regularized Laplacian”,
which considers a regularized factor, α > 0 to be added to
each of the Laplacian matrices under consideration,

L̂1 = L1 + αIN×N (12)

L̂2 = L2 + αIN×N . (13)

Clearly, the eigenvalues of the matrix L̂1 are those of the
matrix L1 shifted by the positive constant α, so that all the
eigenvalues of L̂1 (as well as those of L̂2) are greater than
zero and increasing with α.

Remark: Alternative generalizations and Delta-
Connectivity. The definitions in (12) and (13) coincide with
one the forms of the generalized Laplacians. Alternatively,
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Fig. 2: Example of graph obtained with Erdos-Renyi model
with N = 50

one could consider the generalization

L̃1 = L1 + αD1 (14)

L̃2 = L2 + αD2. (15)

Since L̃1 and L̃2 are symmetric and strictly diagonal dominant,
all the eigenvalues of are greater than zero and increasing with
α. Interestingly, the definition in (14) can be related to that in
(3). Specifically, upon setting α = 1− ε, one has that

S = (I + εL̃1)
−1. (16)

Since in the context of graph signal processing, graph filters
are defined as polynomials of the so-called graph shift op-
erator, a sparse matrix accounting for the structure of the
graph [8], [9], the above equation reveals that the affinity
matrix S, which serves as basis of the “Delta-Connectivity”
similarity, can be understood as a linear graph filter on the
shift operator L̃1. Hence, by choosing different types of shift
operators (generalized Laplacians) as well as different types
of filters (low vs. high pass, single-pole vs. single-zero) one
can encode a span of notions of similarities among graphs.
This issue will be subject of future research.

IV. SIMULATION RESULTS

To gain some intuition on the proposed metrics, preliminary
simulations are run. To that end, we have used the Erdos-Renyi
model to generate a set of 8 random graphs with N = 50

nodes and different edge set E . An example of such graphs is
depicted in Fig. 2.

Fig. 1 shows the distance results obtained with the proposed
graph Fourier distances with Frobenius distance and Jeffries-
Matusita distance, and the results are compared with the
geodesic distance computed over the Laplacian matrices (Fig.
1(c) and the Delta-Connectivity algorithm [4] (Fig. 1(f)).
First of all, from Fig. 1 it can be observed that the three
proposed metrics based on the Laplacian matching behave
well, providing symmetric distance matrix with zero-diagonal
elements. Secondly, Fig. 1 shows how the proposed spectral-
based graph metrics capture the graph similarity achieving
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Fig. 3: Frequency representation of graph signal on non-similar
graphs: (a) G1 and (b) G4
results which are comparable to the state-of-the-art without the
need of computing the matrix of pairwise node affinity scores
which is complex, time consuming and subject to the definition
of ε. Although a method to speed-up the affinity computation is
proposed in [4], still the resulting matrix needs to be compared
with a particular distance. The methods proposed in this paper
are single-step metrics applied directly at the GFT of the
Laplacian matrices.

Next, we take the pair of graphs G1 and G4 from the previous
set, which seem to have distant graph Fourier transforms,
V1 and V4, according to the previous results. We assume a
certain graph signal x ∈ RN which is randomly generated with
values uniformly distributed between [0, 20] and we compute
the GFTs as y1 = V−1

1 x and y4 = V−1
4 x. The resulting

frequency domain responses are depicted in Fig. 3. It can be
observed that the non-similarity in Vs translates into non-
similar Fourier representations. Similarly, we have taken the
pair of graphs G2 and G8 from the previous set, which have
very similar V2 and V8, according to the previous results. We
compute the GFTs as y2 = V−1

2 x and y8 = V−1
8 x using the

same graph signal x and we show the obtained results in Fig.
4. Clearly, the obtained frequency responses are very similar,
thus confirming our hypothesis.

Fig. 5 illustrates the frequency response of a filter composed
of 5 taps, all equal to 1, applied on graphs G5 and G7, which
according to previous results have shown strong similarities in
dGFT−F . It can be observed that the filters’ spectrum looks
almost identical thus proving the benefits of the proposed GFT
distances.

V. CONCLUSION

This paper proposed a new framework for assessing the
similarity between aligned graphs (i.e. with node correspon-
dence) based on the concept of graph spectral transfromation
of the Laplacian matrix. The motivation for this work is to
exploit current findings in spectral graph theory to improve
the available graph similarity tools. Different distances have
been proposed and preliminary simulations assessing their
performance have been presented. When comparing the pro-
posed metrics with the most relevant state-of-the-art technique,
the schemes presented in the paper show a good balance
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(c) dGFT−L with Geodesic
V Jeffries-Matusita Distance
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(d) dGFT−S with Jeffries-Matusita
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(e) dGFT−F with Jeffries-Matusita
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(f) Delta-Connectivity [4]

Fig. 1: Comparison of different distances.
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Fig. 4: Frequency representation of graph signal on similar
graphs: (a) G2 and (b) G8
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Fig. 5: Frequency representation of graph filter on similar
graphs: (a) G5 and (b) G7
between complexity and performance. Future work includes
consideration of more general matrix polynomial distances,
analytical characterization of the distance for particular types
of random graph models, and extensions of the definitions for
graphs where node correspondences are not known.
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