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Abstract—Automatic segmentation of organs on fat-water
magnetic resonance (MR) images not only enables an analysis
of their morphological characteristics but also their tissues
pathogenesis demonstrated by their fat fraction ratios. So far, only
a few methods have been designed based on these images and all
proposed segmentation algorithms have only addressed one organ
at a time. In this paper, we propose a hierarchical deformation-
/registration-free algorithm for multilabel segmentation of fat-
water MR images without need to prior localizations or
geometry estimations. This method involved a hierarchical
random forest classifier and a hierarchical conditional random
field (CRF) encoding a multi-resolution image pyramid. This
pyramid was formed by extracting multiscale local and contextual
features from image patches at different resolutions. The
classifier used penalized multivariate linear discriminants and
SMOTEBagging to mitigate limited and imbalanced training
data. The CRF refined the segmentations with regard to the
spatial and hierarchical consistencies of the labels by using
layer-specific significant features identified over the trained
random forest classifier. Also, we incorporated resolution-specific
hyperparameters to handle variable numbers or class mixtures
of the image patches over hierarchical structures. This method
was trained and evaluated for segmenting 10 thoracic and 5
lumbar VBs and IVDs on 30 training and 30 test volumetric
fat-water (2 channel) MR images. Objective evaluations revealed
its comparable accuracy to the state-of-the-art while demanding
less computational burden.

I. INTRODUCTION

Noncontrast enhanced magnetic resonance (MR) imaging
provides a noninvasive means for automated image-based
analysis of the morphological and functional properties of
tissues. Manual segmentations are tedious, costly, and error-
prone while well-designed automatic algorithms enable robust
reproducible segmentations.

Automatic simultaneous segmentation of multiple organs
on MR images could enable image-based analyzes while
eliminating the burden of one-by-one segmentations. These
simultaneous segmentations become more important when
multiple organs or organs of disconnected parts are to be
analyzed on large cohort images.

Most of the previous methods for automatically segmenting
organs on MR images have relied on T1- or T2-
weighted MR images [1]. Chemical-shift-encoded (Dixon)
MR imaging provides fat and water images of high
contrasts that enable a simultaneous assessment of tissue
morphologies and its tissue pathogenesis reflected by fat
fraction ratios [2]. Additionally, most of the state-of-
the-art methods for segmenting organs have derived and
initialized a local [1], [3] or a global/local [1], [2]
model on shapes, geometries, pairwise geometric constraints,

or intensities of the addressed tissues to steer image
registrations/deformations towards organs boundaries. These
steering-based approaches were to reduce the computational
burden of the registrations/deformations. However, they
demanded a localization or geometry estimation prior to
the segmentations and implied a sequential (one-by-one)
localization and segmentation if multiple tissues or organs of
disconnected parts were addressed. Besides the computational
burden, the sequential localizations/segmentations suffered
from ambiguities if the addressed tissues had a repetitive
pattern. These ambiguities were addressed by spatial
probabilistic maps obtained from trained CNN models
[1], parzen windows applied to the training images, or
hidden Markov models of distances, relative shapes or pose
differences of neighboring tissues [1], [3]. Having significant
shape, geometry, and intensity variations in the training images
could enhance the generalizability of the derived models for
segmentations. However, they could reduce the specificity of
above methods in resolving the localization ambiguities.

In this paper, we propose a hierarchical deformation-
/registration-free method for automatically segmenting
multiple organs on fat-water MR images without need to prior
localization or geometry estimation. Due to the repetitive
pattern and the disconnected form of vertebral bodies (VBs)
and intervertebral discs (IVDs), the proposed method was
trained and evaluated for segmenting 10 thoracic (T3–T12)
and 5 lumbar (L1–L5) human VBs and their IVDs. These
were done using 30 volumetric training and 30 volumetric test
fat-water MR images acquired from 37 men and 23 women
of 42 ± 18 years age, 165 ± 15 cm height, and 33 ± 11
kg/m2 body mass indices, using a two-point 3D Dixon-VIBE
sequence on a 3T whole body clinical MR scanner.

Besides simultaneous multilabel segmentation, the proposed
method is quite generic and applicable to any organs/tissues
whose segmentations are challenged by anatomical complexity
or ambiguities of automatic localizations.

II. MATERIALS AND METHODS

A. Generation of the Reference Masks (Ground Truths)
Volumetric reference masks of the addressed VBs and IVDs
were manually segmented on the Dixon MR images using the
tools of the Medical Imaging Interaction Toolkit (MITK) of
release 2015.05 [4]. This way, each image voxel was assigned
a label from L = {VBs, IVDs,BG}, where BG denoted
background. These labels formed a map L(1) : Ω → L,
with Ω ⊂ R3 being the domain of all the processed fat-water
images. For each volunteer, these segmentations took around 6
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Fig. 1. Flow chart of the proposed framework for automatically segmenting multiple organs on fat-water MR images.

hours. These segmentations, especially on the boundaries, were
subjective and prone to errors caused by image artifacts. Due to
lack of ground truths for in-vivo images, they were considered
to be the ground truths labels of automatic segmentations.

B. Preprocessing of MR Images
To reduce computations, images intensities were linearly
normalized to the range [0, 128]. Also, according to [5],
intensity nonuniformities were estimated on each volumetric
fat image and were reduced on it and its corresponding water
image. The preprocessed images and their ground truths were
equally divided into a training and a test subset.

C. Framework of Automatic Segmentation
The proposed segmentation framework is shown in Fig.
1. It consisted in separate steps for the training and the
test and included a hierarchical random forest classifier
and a hierarchical conditional random field (CRF) based
on a multiresolution image pyramid. During the training,
multiresolution training data were used to optimize the random
forest classifier. During the test, multiresolution test data
were used to evaluate the performance of the segmentation
method. The multiresolution training data were formed from
the reference labels and features of all the training fat-
water images. The multiresolution test data were formed by
extracting same features from each test fat-water image.

D. Multiresolution Image Pyramid
The multiresolution image pyramid consisted of 6 resolution
layers. In its rth layer, cubic image patches {q(r)j ∈ Q(r)} of
23(r−1) voxels formed a sampling set Q(r) =

⋃
j q

(r)
j of the

image domain Ω ⊂ R3. The finest image patches at r = 1
were the image voxels. That is, Q(1) = Ω.

The sets {Q(r)}6r=1 were generated from coarse to fine by
uniformly dividing each patch q

(r)
j ∈ Q(r) into 8 disjoint

patches via a map M(r) : Q(r) → Q(r−1). That is,

M(r)(q
(r)
j ) = {q(r−1)i } ⊂ Q(r−1) with q

(r)
j =

⋃
i q

(r−1)
i . In

r = 6, patches overlaps were 100 × (1 − (21/25))% in all
directions. This way, larger patches were sampled denser.

The rth layer of the image pyramid was encoded in the rth

layer of the hierarchical decision trees. To this end, Q(r) and
M(r) were used to spatially decompose the received samples
of the rth trees layer after classifying them.

E. Feature Extraction

A feature vector f (r)j , consisting of local and contextual intra-
channel and inter-channel features, was extracted from every
patch q

(r)
j ∈ Q(r) of every fat-water image. It contained 158

features for patches with more than one voxel and 67 features
for single-voxel patches. The local intra-channel features were
extracted from every fat or water patch and included median
of intensities, average gradient magnitude, average gradient
orientation, and 42 angle-invariant 3D Haralick features [6].

By calculating mean and maximum absolute feature
differences between a fat and its corresponding water patch,
between a fat (water) patch and its 26-connected fat (water)
patches, and between a water patch and its 26-connected fat
patches, the local inter-channel features, the contextual intra-
channel features, and the contextual inter-channel features
were obtained, respectively. Last features measured the
distribution of fatty tissues around each lean tissues.

The optimality of the 26-connected neighborhood was
shown previously [7]. To avoid instabilities of the penalized
linear discriminants, features were normalized to zero mean
and unit variance [8]. Also, use of mean and maximum features
differences, made the above features rotation-invariant.

F. Training Data and Its Balancing
The multiresolution training data T = {T (r)}6r=1 with T (r) =

{t(r)j = (q
(r)
j , h

(r)
j , l

(r)
j , f

(r)
j )} associated each patch q

(r)
j ∈

Q(r) to its label histogram h
(r)
j ∈ H , its ground truth label

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 42



l
(r)
j ∈ L, and its feature vector f (r)j . The label histogram h

(r)
j ∈

H was used to extend the voxel-wise ground truths L(1) to the
patch-wise ground truths L(r) : Q(r) → L for labels {l(r)j }6r=1.

To avoid segmentation biases towards dominant
(background) class, training samples of VBs and IVDs
were oversampled by a multilabel Synthetic Minority
Over-sampling Technique (SMOTE) [9]. We modified this
approach by not only interpolating the feature vectors
but also the label histograms of nearby samples of the
same class. Also, we assigned dummy patches to the
synthetic samples by updating {Q(r)}6r=1 and {M(r)}6r=1

to {Q′(r)}6r=1 and {M′(r)}6r=1. This allowed spatial
decompositions of the synthetic patches as well as the
original ones. Then according to the SMOTEBagging [9], for
each decision tree, a balanced data T ′b = {T ′(r)b }6r=1 with
T ′(r)b = {t′j(r) = (q′j

(r), h′j
(r), l′j

(r), f ′j
(r))} were generated

from T = {T (r)}6r=1. b ∈ {0.1, 0.2, ..., 1} was a rate factor
and every 10 trees processed balanced data of the same b [9].

G. Building the Hierarchical Binary Decision Trees
Each decision tree was recursively grown from coarse to fine
by feeding the coarsest training data T ′(6)b to its root node. A
binary decision node m(r) at the rth tree layer, split its received
data T ′(r)m ⊂ T ′(r)b into its left and right child nodes by a
penalized multivariate linear discriminant with parameter set
c
(r)
m = (c

(r)
pm , c

(r)
tm ); c(r)tm ∈ {−1,−0.75, ...,+1} was a threshold

and c
(r)
pm ∈ RNd were projecting coefficients given by

c(r)pm
= arg min

ĉ
(r)
pm

1

|T ′(r)m |

(( |T ′(r)
m |∑

j=1

[a(f ′′
(r)
j )−

− (ĉ(r)pm

T · f ′′(r)j )]2
)

+ λ
(r)
ld

Nd∑
i=1

|ĉ(r)pmi
|2
)
,

(1)

where f ′′
(r)
j ⊂ f ′

(r)
j was a vector of Nd ≈

√
dim(f ′

(r)
j )

randomly sampled features at m(r); −1 ≤ ĉ
(r)
pmi
≤ +1 was

the ith element of ĉ(r)pm and a : RNd → {−1,+1} fulfilled the
constraint

∑|T ′(r)
m |

j=1 |a(f ′′
(r)
j )|2/|T ′(r)m | = 1 required by casting

the classification into a regression [8].
The above minimization was done by an adaptive iteratively

re-weighted Penalized Least Squares (airPLS) algorithm [10].
The optimum set c∗(r)m = (c

∗(r)
pm , c

∗(r)
tm ) was the minimizer of

the Gini index of the split at m(r):

c∗(r)m = arg min
∀(c(r)

pm ,c
(r)
tm

)

GIsplit(m
(r)). (2)

Indices of f ′′
(r)
j ⊂ f ′

(r)
j , labels distribution lT ′(r)

m
(l) =

|{t′j(r) ∈ T ′
(r)
m |l′j(r) = l}|l∈L, empirical class posterior

probabilities {P (r)
m (l) = lT ′(r)

m
(l)/(

∑
l′∈L lT ′(r)

m
[l′])}l∈L, and

the optimum parameters c
∗(r)
m were saved at each decision

node m(r) to be used in the test phase.
The gini impurity of T ′(r)m was GI(T ′(r)m ) = 1 −∑
l∈L (P

(r)
m (l))

2 and the impurity decrease after the split at
m(r) was ∆GIsplit(m

(r)) = GI(T ′(r)m )−GIsplit(m(r)).
In r = 1, the decision nodes only processed single-voxel

training data without further decomposition. A leaf node m(1)

was made when its received data had GI(T ′(1)m ) ≤ 10−5 or a
preoptimized maximum tree depth D∗t was reached.

H. Layer-wise Feature Selection
To reduce computations on the CRF, only most discriminant
features, identified over the trained random forest classifier,
were used to determine optimum labels. To this end, we
calculated following weighted sum of coefficients over all the
decision nodes of the rth layer of every tree t ∈ Nt,

c
(r)
t =

∑
m(r)∈t ∆GIsplit(m

(r)) · c′∗(r)pm∑
m(r)∈t ∆GIsplit(m(r))

, (3)

where c′
∗(r)
pm

of dim(f ′
(r)
j ) size was a vector obtained from

taking absolute values of the elements of c
∗(r)
pm and assigning

zero projecting coefficients to unprocessed features at m(r).
Then we computed the average c(r) = 1

Nt

∑
t∈Nt

c
(r)
t and

interpreted its f th element, 0 ≤ c(r)f ≤ +1, as the significance
level of the f th element of f ′(r)j or f (r)j . Features with c(r)f ≥
0.25 formed the vector of significant features fsig

(r)
j for every

image patch at the rth layer.

I. Automatic Segmentation of the Test Data
The multiresolution test data D = {D(r)}6r=1 with D(r) =

{d(r)j = (q
(r)
j , f

(r)
j )} were generated from each test fat-water

image. The coarsest test data D(6) were fed to the root node of
the trained decision trees to be processed from coarse to fine
until leaf nodes were reached. Every test sample d(r)j ∈ D(r)

m ⊂
D(r) received by m(r), was affected the posterior probabilities
{P (r)

j (l̂
(r)
j = l|f ′′(r)j ) = P

(r)
m (l)}l∈L for its label l̂(r)j ∈ L. The

labels distribution lT ′(r)
m

(l)
l∈L

, saved at m(r), determined an

initial estimate of the label, l̂(r)j0
, for d(r)j ∈ D(r)

m as

l̂
(r)
j0

= arg max
l∈L

lT ′(r)
m

(l). (4)

The test sample d(r)j ∈ D(r)
m was then split by the optimized

discriminant at m(r) and decomposed into a finer resolution
via the mapM(r) to be processed by the (r−1)th tree’s layer.
Each d(r)j ∈ D(r) could be processed by N ′t ≤ Nt trees. Thus

the average of its affected probabilities, {P (r)

j (l)}l∈L, were
considered for determining its label l̂(r)j ∈ L:

l̂
(r)
j = l̂

pos(r)
j = arg max

l∈L
P

(r)

j (l). (5)

The estimates l̂pos = {l̂pos(r)j ∈ L}6r=1 were regardless of
spatial (neighborhood) or hierarchical relationships between
the patches. To consider these, {P (r)

j (l), l ∈ L}6r=1 were
fused and regularized by a hierarchical CRF defined on an
undirected graph G = (V, Ea

⋃
Ep) with vertices V and edges

Ea
⋃
Ep [11]. The graph was based on the multiresolution

image pyramid with Ea = {E(r)a }6r=1, E(r)a = {(i, j)|q(r)i ∈
Q(r) is adjacent to q

(r)
j ∈ Q(r)}, Ep = {E(r)p }6r=2, and

E(r)p = {(i, j)|q(r)i ∈ Q(r) is parent of q(r−1)j ∈ Q(r−1)}.
Over this graph, Eq. 6 was minimized by an iterative primal-

dual algorithm [12]; l̂ = {l̂(r)j ∈ L}6r=1 were the estimated
labels; δ(.) was the Kronecker function; ‖.‖1 was the l1 norm,
and fsig

(r)
j were the layer-wise significant features. The spatial

(intra-layer) and the hierarchical (inter-layer) consistencies of
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E(̂l) = −
( 6∑

r=1

|D(r)|∑
j=1

log({P (r)

j (r)}l∈L)
)

+
( 6∑

r=1

∑
∀(i,j)∈E(r)a

λ(r)s · exp(− ‖fsig(r)i − fsig
(r)
j ‖1/dim(fsig

(r)
i )) · (1− δ(l̂(r)i , l̂

(r)
j ))

)

+
( 6∑

r=2

∑
∀(i,j)∈E(r)p

λh · exp(− ‖fsig(r)i − fsig
(r−1)
j ‖1/dim(fsig

(r)
i )) · (1− δ(l̂(r)i , l̂

(r−1)
j ))

)
, (6)

TABLE I
QUANTITATIVE METRICS COMPARING THE AUTOMATICALLY (AU) AND

THE MANUALLY (GT) SEGMENTED OBJECTS

Name Definition

Dice (%) 2|AU∩GT|
|AU|+|GT|

MSSD (mm)

∑
a∈δ(AU)

min
g∈δ(GT)

d(a,g) +
∑

g∈δ(GT)

min
a∈δ(AU)

d(a,g)

card(AU∪GT)

HSD (mm) max ( max
g∈δ(GT)

min
a∈δ(AU)

d(a,g), max
a∈δ(AU)

min
g∈δ(GT)

d(a,g))

d(a,g) was the Euclidean distance between a and g; δ denoted the surface.
Dice compared the segmented volumes. However, MSSD and HSD
compared the segmented surfaces.

TABLE II
THE OPTIMIZED HYPERPARAMETER VALUES

Hyperparameter N∗t D∗t λ
∗(6)
ld λ

∗(5)
ld λ

∗(4)
ld λ

∗(3)
ld λ

∗(2)
ld λ

∗(1)
ld

Value 80 15 101 101 100 10−2 10−3 10−1

Hyperparameter λ
∗(6)
s λ

∗(5)
s λ

∗(4)
s λ

∗(3)
s λ

∗(2)
s λ

∗(1)
s λ∗h

Value 10−4 10−3 10−2 10−2 10−1 101 10−1

Nt: Number of the decision trees; Dt: Maximum depth of the trees;
{λ(r)ld }6r=1: Regularization parameters of the linear discriminants;
{λ(r)s }6r=1: Parameters for spatial regularization of the labels;
λh: Parameter for hierarchical regularization of the labels.

labels were regularized by the second and the third term of
Eq. 6, giving the optimum labels l̂crf = {l̂crf(r)j ∈ L}6r=1 as

l̂crf = arg min
l̂

E(̂l), (7)

To speed up this minimization, each l̂(r)j was initialized by l̂(r)j0

given by Eq. 4. In Eq. 6, by replacing l̂ with l̂crf and merging
the regularization terms in their corresponding probabilities,
the refined probabilities {P crf(r)

j (l)}l∈L, fulfilling

Emin = E(̂lcrf) = −
6∑

r=1

|D(r)|∑
j=1

log({P crf(r)
j (l)}l∈L), (8)

were obtained. The voxel-wise labels ({l̂pos(1)j } or {l̂crf(1)j }),
determined the volumetric masks of the automatically
segmented organs on the test fat-water image.

J. Evaluation
The proposed segmentation framework was objectively
evaluated using the quantitative metrics of Dice coefficient
(Dice), mean symmetric surface distance (MSSD), and
Hausdorff distance (HSD) [1] described in Table I.

III. RESULTS

By paralleling trees’ predictions on a quad-core CPU of 3.10
GHz frequency and 16 GB RAM, this method segmented 15
VBs and 15 IVDs of a test subject in 11±2 min.

Table II shows the optimized hyperparameters of the
proposed segmentation framework. Fig. 2 shows the voxel-
wise probabilities and the segmented masks of the VBs and
IVDs on mid-sagittal slices of 3 test fat-water images. Fig.
3 shows the box plots of the quantitative metrics, described

in Table I, for the automatically segmented volumes of the
VBs and IVDs on 30 test fat-water images. In segmenting
VBs on all the test fat-water images, this method achieved
Dice coefficient (Dice) = 92.5±1.9%, mean symmetric surface
distance (MSSD) = 0.65±0.18 mm, and Hausdorff distance
(HSD) = 3.98±1.12 mm. For IVDs, it achieved Dice =
91.4±2.3%, MSSD = 1.18±0.4 mm, HSD = 4.6±0.9 mm.
These results compared favorably to the state-of-the-art for
segmenting VBs/IVDs on MR images [1], [3], [13].

In the erroneous segmentations of the present method, two
major patterns were observed. One appeared at the boundaries
and another was randomly distributed over the tissues. The
former could be attributed to the limited training data and
the latter to the use of an unsupervised CRF for refining the
segmentations. Moreover, image artifacts or pathological tissue
alterations could lead to either of these patterns.

IV. DISCUSSION AND CONCLUSION

In this paper, we proposed a registration-/deformation-free
method for automatically segmenting multiple organs of
disconnected parts on volumetric fat-water MR images without
prior localizations or geometry estimations. The proposed
method extended [11], [14], [15] by

• encoding a multiresolution image pyramid in each binary
decision tree for having one classifier for all resolutions

• handling limited training data by using a penalized
multivariate linear discriminant at every decision node

• handling different number of training data in different
trees’ layers by defining resolution-specific regularization
parameters {λ(r)ld }6r=1 for the penalized discriminants

• denser sampling of coarser patches by defining a resolution-
specific patch sampling

• feasible node optimization despite of large feature dimension
by combining analytical and exhaustive searches

• mitigating class imbalances of the training data by using a
modified SMOTEBagging [9] in the hierarchical classifier

• using a new set of multiscale local and contextual features
for a fast localization and a simultaneous segmentation

• applying a layer-wise feature selection and using these
features and the label distributions of the training data for
speeding up the estimates on the CRF

• handling different class mixtures of image patches at
different resolution layers by defining resolution-specific
hyperparameters for the hierarchical CRF

Major bottlenecks of the present method were using limited
training data, refining segmentations by an unsupervised CRF,
and ignoring the effects of image artifacts or pathological
tissue alterations on the extracted features. Also, the derived
segmentation model was dependent on the modality, contrast,
and quality of the used images and could be changed if
these characteristics vary. Future works would be incorporating
multimodal, multicenter, and pathological images for a higher
clinical utility. Application of this method to multichannel
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Fig. 2. Left Parts: Voxel-wise probabilities {P (1)
j (r)}l∈{VBs,IVDs} (without CRF) or {P crf(1)

j (r)}l∈{VBs,IVDs} (with CRF) of VBs and IVDs of 3 test
fat-water images shown on their mid-sagittal slices. Right Parts: Automatically (red) and manually (green) segmented masks and their overlaps (yellow) for
the VBs and IVDs of the same slices. The automatic masks were based on {l̂pos(1)j } (without CRF) or {l̂crf(1)j } (with CRF).

Fig. 3. Box plots of the quantitative metrics for the automatically segmented volumes of the VBs and IVDs on 30 test fat-water images.

medical images is straightforward.
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