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Abstract—Many medical (computerized tomography, magnetic
resonance imaging) and astronomy imaging problems (Square
Kilometre Array), spectroscopy and Fourier optics attempt at
reconstructing high quality images in the pixel domain from a
limited number of samples in the frequency domain. In this paper,
we extend the problem formulation of learnable compressive
subsampling [1] that focuses on the learning of the best sampling
operator in the Fourier domain adapted to spectral properties
of training set of images. We formulate the problem as a
reconstruction from a finite number of sparse samples with a
prior learned from the external dataset or learned on-fly for the
image to be reconstructed. The proposed methods are tested on
diverse datasets covering facial images, medical and multi-band
astronomical applications using the mean square error and SSIM
as a perceptual measure of reconstruction. The obtained results
demonstrate some interesting properties of proposed methods
that might be of interest for future research and extensions.

Index Terms—Compressive sensing, learnable compressive sub-
sampling, support learning, reconstruction, deep priors.

I. INTRODUCTION

The problem of recovering a high dimension signal x € RY
from its low dimensional observation a = Wx + e with
a € R" and n << N corrupted by noise e is of great
importance for many imaging applications. In one of the most
popular formulation known as compressive sampling, it has
received a tremendous attention in many publications [2].
In such a formulation, the signal x is assumed to possess
some structure that can be expressed either via sparsity in
some orthonormal or overcomplete (shallow) representations
or via some properties of latent space in more recent deep
representations [3]. In the classical compressive sampling,
the measurement matrix W € C"*" is generally generated
randomly, that might be very inefficient for practical appli-
cations in terms of storage and computations. The recent
work [2] extends the classical formulation of compressive
sensing using the sub-sampling structured matrices of the form
W = PoW, with an orthonormal operator ¥ ¢ CN*V
and sampling operator Pg : CV — C". The main idea
behind the proposed extension consists in learning of sampling
operator P on the training set of images to minimize the
average reconstruction error as a cost function. It should be
pointed out that due to the physical imaging constraints there
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is no freedom in the selection of the operator ¥, whereas the
only possible adaptation to data is via the operator Pq. The
solution to the above adaptation problem leads to a natural
conclusion that the highest sampling rate of the operator P
should be concentrated in the region of high energetic image
components. In turns, it suggests that the optimal sampling
geometry P computed on average for a set of natural imaging
should be in the region of low frequencies possessing the
highest energy. Additionally, in contrast to the compressive
sensing based on non-linear reconstruction algorithms, the
authors in [1] consider a linear decoder of form x = \Il*Pga,
where * denotes the complex conjugate.

In some previous works, a problem of optimal on-fly
construction of a sampling operator Py with an iterative
reconstruction was considered in [4], [5]. No training on
the external dataset was assumed whereas the process of
adaption was based on a fact that many natural images possess
dominating energy frequency components located along some
spatial frequency directions. A small number of samples in
Py were used to estimate these directions, mainly in low
frequency part of spectrum, and the remaining budget of
sampling components was adapted accordingly. In this case,
the sampling operator was not trained on average as above but
was adapted to the properties of each image. One can consider
this approach as an analogue of k-best selection with the given
number of sampling components to be k.

Being intuitive, the above approaches do not take into
account more powerful priors about the image statistics that
can be learned by modern machine learning methods.

In this respect, our paper extends the previous works in the
following ways:

1) given a training set of images, we train unsupervised
models in several sub-bands in the frequency domain
and ensure the correct classification of parameters of
these models just from several samples, thus reducing
the sampling rate and enabling the reconstruction of
details in images from the training models;

2) we design an optimized partitioning onto sub-bands’ and
sampling rate for each sub-band;

3) we consider an alternative algorithm based on recently
proposed deep image prior model [3] that does not
require any pre-training and a regularized reconstruction
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is performed via imposing constrains on parameters of
deep network;

4) we also investigate the impact of alignment quality

(accuracy of prior) for the trained models.

Notations. We use capital bold letters, W & C"*N | to
denote real or complex valued matrices, small bold letters,
x € RY, to denote real or complex valued vectors, capital
letters, X = {x1,...,X,,} € RV*™ to denote a set of real
or complex valued vectors. The sign * denotes the complex
conjugate. The estimate of x is denoted as X. ¢, and c;,
denote respectively the real and imaginary parts of the complex
vector, ¢ = Cp. + iciy, € CM. All vectors have finite length,
explicitly defined wherever appropriate.

II. PROPOSED APPROACHES

In this paper we will consider Learnable Compressive
Sub-sampling based on Multi-Band Coding (section II-A)
and Learnable Compressive Sub-sampling with Reconstruction
based on Deep Image Prior (section II-B) that can be applied
depending on the available priors and sampling data. Our
estimations are obtained in the following form:

% =" (Pha+PLoPoc¥b), (1)

where a is the sampled observation in the transform domain,
QC is the complementary support set of 2 and b is the prior
information obtained from the training set.

A. Learnable Compressive Sub-sampling based on Multi-Band
Coding

The main idea is simple, given a set of m well aligned
training signals X = {xi,...,X,} € RYX™ we generate
(a) a codebook capable to well represent new signals and
(b) a sub-sampling scheme that maximizes the correct code
identification within each codebook.

The training algorithm is illustrated in Fig. 1. The training
is split into four main stages: (1) change of basis and vector-
ization; (2) sub-bands partition; (3) codebook generation for
each sub-band and (4) selection of the sub-sampling operators
for each sub-band.

1) Change of basis and vectorization: Due to the fact that
very often in real cases the signal acquisition is done not in the
signal but in some transform domain, first of all we transform
the training signals X = {x1,...,%,,} € RY*™ from the
signal domain to the transform domain using the operator ¥ €
CN*N Additionally, since the transform domain is supposed
to be complex, for simplification, we split the resulting signals
into real and imaginary parts:

X =V, X+ 1%, X, 2

where W,.. and W;, represent real and imaginary parts,
respectively.

In our analysis we use 2D Discrete Fourier Transform (2D-
DFT) to obtain the transform representation of a set of 2D
real images, i.e., the training set. In the transform domain, we
perform a vectorization of each obtained signal in a zig-zag
manner [6] with subsequent splitting into real and imaginary
parts.
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Fig. 1. Training process: from the training set we generate sub-bands in the
transform domain, train codebooks and sampling operators for each sub-band.

2) Sub-Bands partition: Dividing the transformed signals
into sub-bands reduces the dependency on the size of the
training set, improves the robustness to geometrical alignment,
increases the reconstruction quality and avoids overfitting.

Taking into account that in the transform domain the signals
have not equal energy in each sub-band, the size and position
of the sub-bands have a big impact on the final results. For
such a reason we choose to adapt the sub-bands division to the
structure of the transformed signals. In particular, we divide
each transformed signals into L sub-bands in such a way that
each sub-band contains on average the same amount of energy:

3)

where j € {—J, ..., J} denotes index of discrete samples in the
DFT domain, |.| denotes the magnitude of DFT, ¥x;(j) is the
value of the transformed ¢-th training signal at the frequency
Jj.

Once the energy is estimated per frequency sample, it is
possible to cumulate it as:

e(j)- “4)

Based on the obtained cumulated energy, we perform the
splitting into L equal-energy sub-bands (see Fig. 2) and we
mark the [-th sub-band of the training set as:

(TX)! = {(Tx;),..., (Tx,,)'}.
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Fig. 2. Flatten and cumulated energy with bands’ division accordingly to (4).

3) Codebook generation: We perform codebook generation
for each of the L sub-bands. We generate the codebooks
simply using the K-means algorithm. However, instead of
generating a single codebook of complex type, we generate
two independent codebooks C., and C!, for the real and
imaginary parts, respectively.

4) Sub-band sub-sampling: The final step of the training
process is a generation of the sampling scheme per sub-band.
Given the codebooks, Cﬁe and Cém, for the [-th sub-band, we
seek the index set €); that maximizes the correct codewords
identification in each sub-band. Due to the fact that if the
distance between pairs of codewords in the selected €2; is close
to 0 then it is impossible to distinguish between them and the
selection will be random. At the same time, if the distance
between each pair in the selected €; is sufficiently big then
the probability of correct selection is close to 1. For this reason
we seek such a sampling pattern that maximizes the overall
distance between each pair of codewords in the codebooks.
This can be expressed in the next form:

> IPo,ca — Po,cll3+

Ca;Ch EC,&.E

2

cc,cq€Cl

Q; = argmax
Q

®)

[Pg,cc — Pg,cqll3,

where ¢, and c;, are all pairs of codewords from the codebook
C!. and c; and c, are the corresponding pairs of codewords
from the codebook C!, .

Since for a large number of codewords this operation is quite
complex, of order O(n2), therefore it may be convenient to
approximate it as:

O = arg max (Pﬂlgcie + PQlo—Cim)’ (6)
l
where oci_and o are the frequency wise standard deviation
of the real and imle{éinary codebooks, respectively.
5) Encoding and Decoding: The encoding of a new signal
x € RY can be performed as described below. The first step
is the sub-sampling per sub-band:

al = Pg, (¥x)". @)

Then a pair of codewords for real and imaginary parts is
assigned to each sub-sample a’ from the respective codebooks
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! I yia:
C,. and C;,,, via:

c. = arglmin [Re(a') — Pg,cl. 3
cl,

. ®)

l.m = arg min ||Im(al) - PQ,CﬁmHga

C;

Cim

where Re(a') and Im(a') denote the real and imaginary part,
respectively.

To improve both identification rate and reconstruction it is
possible to include the magnitude and phase error into the
minimization problem:

l

Cres C7lim = arg min ||Re(al) - PQlcf"eug +

cl

1
¢ im

[Im(a’) - Po,ci, I3+ (9
H|al| - ‘PQl (C'lre +i- Cé7n)‘||§+
|arg(a’) — arg(Po, (¢l + i - €n))ll2n

where |.| and arg(.) denote respectively the magnitude and
phase of a complex vector, and ||.||2, is the mean angular
difference normalized in the range (0, 27). The optimization of
this formula will minimize the error not only between the real
and the imaginary part, but also between phase and magnitude.
However, solving this problem is computationally much more
expensive (O(n?)) than the previous problem (8) (O(n)). To
reduce the computation complexity it is possible to apply the
minimization problem to smaller subset of the codebook, using
the formula (8) to select few pairs of codes from both datasets.

The reconstruction, or decoding, of the signal X is computed
by processing the output of the encoder as follows:

(P! + PLPoc(cl, +ick,)).

x =0 ceey , (10

(Pg,a” + PocPog (cr, +icj,,)
where {.} denotes the concatenation of the vectors and Q¢ is
the complementary support set of £2;. The formula (10) can
be expressed as well in the form of the equation (1), where
Q= {Q,... Qr}, QY is its complementary set and b =
{el, +icl,,,...,ck +ick 1.

B. Learnable Compressive Sub-sampling with Reconstruction
based on Deep Image Prior

In a more general approach, one can consider the recon-
struction problem as an inverse problem:

(Z, é) = argmin ||a — PQ\Ilfg(z)Hg +
2,0 a1
af).(z) + BQ0(0),

where fg(z) is a parametrized non-linear regressor expressed
in a form of the deep network with the parameters of layers’
filters § = (Wq, -+, W), Q.(.) and Qp(.) denote the
regularization operators for the latent variable z and network
parameters 6, respectively, « and § stand for Lagrangian
multipliers. The reconstruction is given as X = f;(2).
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Fig. 3. MSE and SSIM at different sampling rate for the YaleB, aligned OASIS, NASA SDO and NASA IRIS datasets.

This can be achieved by an alternative minimization. How-
ever, it requires to be trained on the external training dataset.
Recently Ulyanov et. al. [3] suggested a simplified version
with a fixed z for all the data vectors:

0 = argminja - PoWfo(z)|5 + AW(0),  (12)
where the optimization is only performed with respect to 6
that essentially represents one step of the equation (11).

Prior injection: it is also possible to improve more the
results by using the prior information of the image (e.g., a
dataset mean value). The injection of the prior information
can be done as follows:

0 = arg min |ja — PQ‘I’fe(Z)H;
0 , (13)
+ a| fo(z) — b3 + 5%(6),

where b is the prior information extracted from the training
dataset X and « stands for Lagrangian multiplier.
The decoding scheme is very simple:

% = ¥ (Pha+ PlcPac ¥ f;(z)), (14)

where Q¢ is the complementary set of 2 and f;(z) is the
result of reconstruction based on the trained neural network.

III. RESULTS

To evaluate the performance of the proposed approaches
we use several databases, namely, YaleB Faces [7], OASIS
MRIs (63" slice, raw and aligned) [8], a subset of 1500
images of size 256 x256 pixels extracted from the NASA Solar
Dynamic Observatory dataset [9] and 540 cropped images of
size 256x256 pixels from the NASA IRIS dataset [10]. All
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used images were converted to gray-scale and the DFT was
used as a transform W.

We compare the performance of the proposed approaches
with the adaptive sampling strategy (further denoted as k-best)
proposed in [11] and with the learned average approximation
introduced in [1] (further denoted as fqug).

Fig.3 shows the dependence of the reconstruction error on
the sampling rate. As a measure of the reconstruction error we
use the Mean Square Error (MSE) and Structural SIMilarity
(SSIM) index [12].

The results obtained for the proposed Learnable Compres-
sive Sub-sampling based on Multi-Band Coding (L.S.C.) and
the Learnable Compressive Sub-sampling with Reconstruction
based on Deep Image Prior (D.I.P.) as well as the results
for the k-best and f,.,y methods are illustrated for four used
datasets. It is easy to see that in the case of the YaleB dataset
all methods have approximately the same performance. At the
same time, for both NASA datasets L.S.C. shows significant
improvements especially for low sampling rates. As for D.LP.
it should be pointed out that, in general, its performance is
quite close to the results obtained with the k-best and fq.4
methods with small improvements at low rates.

For a more detailed analysis of the performance of the pro-
posed methods the reconstructed images for different sampling
rates are shown for each dataset in Fig. 4. To be noted that the
visual quality of recovering the original image using only few
samples (of the order of 10~) based on k-best or fu,, is very
poor and it is quite difficult to recognize the general shape of
the object. Increasing the sampling rate leads to improvement
of the reconstruction quality and the level of details for all
considered methods.

Additionally, it should be noted that the obtained results
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Fig. 4. Example of reconstruction for sampling rate varying from 103 to 107! for the datasets (from left to right): YaleB, OASIS, NASA SDO and NASA IRIS.

and performed analysis allow to affirm the higher risk of
over-fitting of the D.I.P. method. This algorithm converges
sufficiently quickly to the acquired image. However, as it can
be seen in Fig. 4 its potential for image recovery with only few
samples is larger than the one of the k-best and f,; methods.
For small sampling rates D.I.P. allows to capture very well low
frequency components and contours.

As the main disadvantage of the proposed approaches, it
should be mentioned that the proposed Learnable Compres-
sive Sub-sampling based on Multi-Band Coding (L.S.C.) and
the Learnable Compressive Sub-sampling with Reconstruction
based on Deep Image Prior both require a good geometrical
alignment between the training dataset and the image to be
reconstructed. In the case of the YaleB Faces and OASIS MRIs
datasets where the image alignment is not as good as for the
considered NASA datasets, the obtained performance of the
proposed approaches does not outperform the k-best and f.4.

CONCLUSIONS

This paper addresses the problem of learning the best
sampling operator in a transform domain adapted to spectral
properties of the training set of images. We first formulated
it as a reconstruction problem from a finite number of sparse
samples with a prior learned either from the external dataset or
on fly from the image to be reconstructed. We then proposed
two methods that have both low training complexity and,
very low encoding and decoding complexity of the signal of
interest. Moreover, one of the proposed approaches, based on
the deep image prior extension, represents a novel approach
in deep image priors and does not require any training on the
external datasets besides the mean vector. We evaluated the
performance of the proposed approaches on four datasets and
compared their efficiency with two well known methods in this
domain. The proposed Learnable Compressive Sub-sampling
based on Multi-Band Coding shows significant improvements
in the reconstruction from only few samples on the consid-
ered NASA datasets and has approximately equal performance
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compared with the reviewed state-of-the-art methods on the
other used datasets.
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