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Abstract—In this paper, we propose a novel 1-D spectral
estimator for signals with mixed spectra. The proposed method
is partly based on the recently introduced smooth spectral
estimator LIMES, in which the smoothness is accounted for by
assuming linearity within predefined segments of the spectrum.
The proposed method utilizes this formulation but also allows
segments to change size to better estimate the spectrum, thereby
allowing for the estimation of spectra that are neither completely
smooth or sparse in frequency, but rather contains a mixture
of such components. Using simulated data, we illustrate the
performance of the proposed estimator, comparing to other recent
spectral estimation techniques.

Index Terms—spectral estimation,
covariance-fitting

time-series, LIMES,

I. INTRODUCTION

Spectral estimation has long been an important tool in
both the analysis and classification of a wide variety of
signals. Classical techniques based on the Fourier transform
are popular and widely used, often in combination with various
windowing techniques in order to improve the estimates.
Such methods often suffer from poor resolution and/or high
variance [1]. As an alternative, one may use a variety of
parametric estimation techniques, generally imposing strong
model assumptions on the signal. Such estimators may render
highly accurate and reliable estimates, if both the model
structure and model order of the signal are well known, but
may also fail to provide meaningful estimates if this is not the
case. Recently, significant efforts have been made to develop
methods that aim at exploiting the strengths of the parametric
estimators, but without requiring a priori knowledge of the
model order of the signal. This is often done by assuming
that the signals of interest are sparse in frequency (see, e.g.,
[2]-[7]). Similar efforts can be made for signals with smooth
spectra, although this problem has attracted less attention
in the literature, especially for the case when the signal is
irregularly sampled.

A notable exception is the maximum-likelihood based esti-
mator for smooth spectra, denoted LIMES, introduced in [8],
[9]. This estimator models the spectral smoothness using a
piece-wise linear model, and proceeds to formulate a sparse
estimation technique to model such signals. The LIMES
algorithm is iterative and requires a reasonably accurate initial
estimate in order to render good results, which in [8] was
provided by the Daniell’s method (DAM) [10]. The LIMES
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estimator is formed using a set of grid points, usually equidis-
tant, in the frequency domain, wherein the spectra is assumed
to be well modelled as being piece-wise linear. Based on
these points, a transformation from the frequency domain to
the covariance domain is performed, from which a covariance
fitting problem may be formulated and solved to yield the
smooth spectral estimate. As shown in [8], the method is able
to accurately model smooth spectra, and the technique was
later extended to allow for 2-D signals and for time varying
signals with smooth spectra in [11], [12], where also a fast
approximative solver based on LIMES was introduced.

In this paper, we further extend upon these ideas, exam-
ining signals with mixed spectra, containing both smooth
components and strong peaks, such as signals containing a
mixture of sinusoidal components and ARMA-processes. To
this end, we generalize the LIMES estimator such that the
estimator determines an optimal set of grid points used to
form the piecewise linear segments in the frequency domain.
To allow for a computationally efficient implementation, an
initial estimate of the spectrum is formed by solving a least-
squares (LS) optimization problem using the same piece-wise
linearity structure assumed in [8], but including the set of
grid points in the optimization problem as variables. Solving
the LS problem yields initial estimates of the grid points and
the corresponding spectrum. These initial estimates are then
refined using a generalized version of LIMES that also allows
for the grid points to be part of the optimization. This allows
the proposed method to better capture non-smooth parts of
the spectrum and correctly represent a larger range of spectra.
We evaluate the method on simulated data, comparing it to
the original LIMES estimator as well as other state-of-the-
art spectral estimators. The proposed method is shown to
outperform earlier related estimators when the signal contains
a mixture of smooth and non-smooth spectral components.

II. SPECTRAL ESTIMATION

We consider stationary signals with unknown spectral den-
sities, thus without any prior knowledge on the shape of the
spectra. To derive our method, we start with forming the
transformation matrix C for smooth spectra and then show
how one may use this formulation to also allow for non-smooth
spectral content.

A. Piece-wise linear spectrum

Consider a stationary signal y(¢), for t = tg,...,tN_1,
that belongs to a second order stationary process with a
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smooth spectrum that is band-limited to a band |B| < 7.
In order to form the smooth spectral estimate, we make use
of the transformation scheme proposed in [8], wherein it
was suggested that the smoothness of the spectrum could be
accounted for by assuming that the spectrum is approximately
linear over a user-defined set of segments. In particular, we
assume that the spectral content between frequencies —B and
B may be divided into M segments, and that any point inside
such a segment, say segment k, may be well modeled as

w — Wk W41 — W
P(w) = A A (1

for w € [wg,wk+1), where Ay = wi41 — wy is the length of
the kth segment. For any second order stationary process, it
holds that the covariance function is the Fourier transform of
the spectral function, i.e.,

R(r) = %/_ P(w)e™ T dw (2)

where 7 is the time lag. Including the assumed bandlimitation
and by defining w = [ w1 WA +1 ]T, as a vector
containing the frequency vertexes, as well as the corresponding
vector = [ ¢ drra1 }T, containing the spectral
densities at the vertexes, and by inserting (1) in (2), one obtains

Prt+1 +

1 B E w— wg W41 — W o
5 Z 1o, (w) A Prt1 + de)k e dw
) 3)

where 1q, (w) denotes the indicator function of that w is in
O = [wg,wk+1). As all sets 2, are assumed to be disjoint,
the integral in (3) may be expressed as a sum of integrals

R(1,®,w) =

1L (98 (W — wy Wht1 — W i
=D N Gt Ak ) e @)
k=1

W

By introducing

Wk+1

1 w— W
F, _ 7 ~ YR iwT
1 (T, w) 5 /Wk A e dw (5)
_ 1 Pt Wk+1 — W ur
Gip(r,w) = 27T/wk A e“Tdw  (6)
one may express (4) as
M
R(r,®,w) =Y Frp1(r,w)pr1 + Ge(r,w)dr ()
k=1

The functions Fj(7,w) and G (7,w) may then be calculated
as (see [8] for details)

Further, by defining

Gi(1,w) ifk=1
Cr(T,w) = Fi(t,w) + Gip(r,w) ifk=2,.,.M (10)
Fioy1 (1, w) ifk=M+1

a piece-wise linear version of the Fourier transform may be
expressed as

M+1

R(r,®,w) = Y Ci(r,w)ey, (11)

k=1
If the observed signal has N samples, R and Cj, with k =
1..M +1, will be N x N matrices. To simplify the notation,
we henceforth drop the 7.

III. PROPOSED SPECTRAL ESTIMATION

Using the piece-wise linear formulation, multiple different
spectral estimators may be formed. In this paper, we will
introduce two different estimators, one being based on Least
squares (LS) and the other on a maximum likelihood (ML)
formulation. The former estimator is computationally cheaper
than the latter, although it is not as accurate. As a result, it
may be used to form an initial estimator for the ML approach,
which may then be used to refine the quality of the estimate.

A. Least squares estimator

An LS estimate of both the spectral density as well as the
position of the frequency vertexes may be formulated as

{éLS,w} — arg min L(®, w) (12)
D w
where
M4 2
L®,w) =||R= ) Ci(w)dr (13)
k=1 F
N 2
- HRW —C(w)<I>H2 (14)

with ||-|| denoting the Frobenius norm, and R the sam-
ple covariance matrix. Further, }?Uec = Vec(R), where
vec (-) denotes the vectorization operator, and C =
[vec (C1),...,vec(Cpr41)]. For a given frequency vector w,

the LS estimate is thus

brs = [Cw)Cw)] 1C(w)* Ryee (15)

Given an estimate ® Ls, the gradients of the LS cost function
may then be calculated with respect to w as shown in the
Appendix. These are then used to update the frequency points
by taking incremental steps in the gradient direction. The step
size taken may be chosen in multiple ways. Here, we begin

with an empirically chosen starting value s; = 0.01/ %

P _ A1 /4w if =0 and increase or decrease this depending on if the previous
(T, w) = 67;%7 ( RRNE R 6—1‘Ak717)) if r#0  step generated a better or worse cost function. Between each
™ T T k—1 . . . .
(8) gradient step, the spectral estimate is updated using the new
Ay J4n fr=0 frequency evalu.ation po.ints. The resulting algorithm,.tem.led
Gi(T,w) =< iwgr 1 1 At . (9) CASED (Covariance fitting Approach for Spectral Estimation
£ (f.—f = (e k 71)) ifT#0 . . . . .
2m it TEAR with gradient Descent), is presented in Algorithm 1.
ISBN 978-90-827970-1-5 © EURASIP 2018 2360



2018 26th European Signal Processing Conference (EUSIPCO)

Algorithm 1 CASED

Algorithm 2 LIMESD

wo = linspace(—B, B, M +1)
R(n,m) = % 323 y(R)y" (k = n +m)
Co < [vec (C1(wo)), ..., vec (Cpry1(wo))]
forAi =1, ..., until convergence do
P+ (Cwi-1)C(wi1))~
OL(P,;,w)
Ww; < w;_1+s; 50
C; «+ [vec (C1(w;)),...,vec (Crrq1(wi))]
if L(@z,wl) < L((I),“ wi,l) then
Si+1 Si/1.5
else
Si+1 125SL
W; < W;—1
end if
end for

! c(wifl)Rvec

B. Maximum likelihood estimator

After finding suitable initial values for ® and w using the
LS method in Algorithm 1, these may be used as starting
values for finding a solution to the ML problem formulation.
Defining the negative log likelihood as

f(®,w) =log (det |R(®,w)|) + y*R(®,w) 'y
where vy is the observed signal, yields the ML estimator

{(f)ML,zJ;} = argmin f(P,w)
D w

(16)

where, given a fixed frequency grid w, the spectral density ®
may be estimated using the minimization-majorizaion method
introduced in [8]. The frequency grid may then be updates in
the same manner as the CASED. As the resulting estimator is
computationally cumbersome, especially when also updating
the evaluation points, one should initialize the method using
a reasonably accurate initial estimate, which is here done
using the CASED algorithm. The resulting algorithm, termed
LIMESD (LIkelihood-based Method for Estimation of Spectra
with gradient Descent), is summarized in Algorithm 2.

IV. NUMERICAL EXAMPLES

To exemplify the performance of the proposed algorithm, we
generate observations of a sinusoidal signal with a normalized
frequency of 7/2 rad/s and an amplitude of 0.5. The signal is
observed with an additive ARMA noise with MA coefficients
[1, 0.25, 0.9s%] and AR coefficients [1, 0.3s] and where the
process is driven by a white Gaussian noise with unit standard
deviation. We generate 250 realizations of the signal, each with
N = 128 samples. The resulting spectral density is shown in
Fig. 1, as compared to the presented CASED and LIMESD
algorithms (Fig. 1a and b, respectively), the periodogram using
a rectangular window (Fig. 1c), the LASSO estimator [13]
(Fig. 1d), the Iterative Adaptive Approach (IAA) estimator
[4] (Fig. le), and the LIMES estimator (Fig. 1f). One may
note that the Lasso estimator and IAA accurately identifies
the sinusoidal frequency, but as expected perform poorly
on the ARMA part. Similarly, LIMES accurately estimates
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Wy = WCASED
Oy = Poasep
for i = 1, ..., until convergence do
®; + LIMES (see [8])
Wi —w;_1+ S"W
if f(@z, wi) < f(q%7 w,;l) then
Si+1 Si/1.5
else
Si+1 12551
W; < W;—1
end if
end for

the ARMA spectrum, as compared to the other estimators,
but by design fails to represent the sinusoidal component
accurately. Both CASED and LIMESD outperform the other
estimators, accurately estimating both the sinusoidal and the
smooth ARMA part. As can be seen from the figure, LIMESD
produces slightly more precise estimates, although this comes
at the cost of higher computational complexity. The average
run times for the methods were 1.5-10~*s for the periodogram,
1.4 -10~2s for the LASSO, 0.78s for IAA, 0.29s for LIMES,
whereas CASED had an average running time of 12.80s and
LIMESD 46.19s.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have presented methods for estimating
mixed spectra using the piece-wise linear model, wherein we
have also allowed the vertexes to shift, to better model the
spectra. We aim to refine the method by allowing on-line
addition or subtraction of frequency vertexes. We will also
focus on reducing the complexity of the proposed algorithms,
introducing better schemes for selecting appropriate step-sizes.

VI. APPENDIX

In this appendix, we present the derivatives of the cost-
functions used to update the frequency evaluation points.

A. Least-Squares derivatives

Define the least-squares cost function as

fC(w)<I>Hj

R Ry — RE,.C(w0)® — DTC(@) Ruee

+07C(w) C(w)®

where T denotes complex conjugation of x. As C(w) is a
complex-valued matrix, the gradient is found using Wirtinger
calculus [14]

OL (®) L (®)\" oC(w)
Do :“<<aC(w)> 8wk>

T —
(%@) %)
0C(w) Owy,

a7
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Fig. 1: The figures a-f shows the performance, as evaluated on 250 realizations of the example signal in Sec. IV. The blue
lines represent the true spectral content. The black lines are the average spectral estimate, and the red dots are the mean +

one standard deviation, for each method respectively.
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The two parts of the Wirtinger derivative are found as

OL®) _ _j .07 + Clw)aa” (18)
()

AL (®) A aT T

—_— = _Rvec(I) C (I)(I) 19

0C(w) e "

The gradient of the matrices C, Vk are common for both the
LS cost function and the ML cost function and are presented
in Subsection VI-C.

B. Maximum-Likelihood derivatives

Define the negative log-likelihood as
f(®,w) =In|det (R(®,w))| +y"R(®,w) "'y (20)

where R(®,w) = ZMH ¢ Cr. Even though C}, is complex
valued, R is real-valued and the derivative of f(®) is found
as

of (P, w) Of(®,w)\" OR(®,w)

2 <0R<¢>,w>> B @D
where
of (@, w) _ ~ . .
IR@.w) — B@w) T~ R@w) Ty R(@,0) 7 (22
and .

aR D, w)
Z 9, 2) awk (23)

where the derivatives of Cj, (w) is found in subsection VI-C

C. Linear Fourier transform derivative

The derivative of the piece-wise linear Fourier transforma-
tion with respect to frequency vertex wy, is found as

M+1

OR(®,w) 0C;j(w)
87% — ; ¢J 8‘Z&)k
. (9Ck_1(w) 8Ok( ) 8Ok-i-l( )
= Pr—1 Owr + Pk + Orpr—— —— Owr,
0Gp—1(w) aGk( ) OF(w)
= Pk 187+¢ ( Owy, + Owy, )
+¢k+15Fka+7w1:)

The partial derivatives of matrices Fy and Gy are presented
below. Assuming 7 = 0 yields

8Fk+1(w) - 8Gk(w) o -1
6wk o &.uk B E (24)
d
an OF(w)  0Gp-1(w) 1 (25)
8wk B 8wk n 47
Further, assuming 7 # 0 implies that
0F,(w)

ewkT i
= 1
Owy, 2 ( + T(wr — Wg—1)

1 .
_ 1— —t(Wp—Wg—1)T
72(wk—wk,1)2 ( ¢ )>
(26)
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OFpy1(w) eenm (1 — e~ iwrri—wi)T
Qwi — 2m T2 (Wh41 — Wi)?
) @
T(Wk+1 — W)
Gr(w) e (i
Qwy — 2m T(Wk+1 — W)

1 .
_ z(wk+1—wk)‘r _ 1
72(wk+1 —wk)Q (6 ))
(28)

8Gk_1(w) 7eiwk_1‘r ei(wkfwk_l)‘r -1
Owy, 27 T2 (W, — w—1)?
_ 7 )ei(wkwk_l)‘r> (29)

T(wk — Wk—-1
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