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Abstract—Compressive spectral coded projections are attained
by an imaging detector as a spatial-spectral field traverses diverse
optical elements such as a coded aperture and a dispersive
element. Compressed sensing reconstruction algorithms are used
to recover the underlying data cube at the resolution enabled
by the captured projections. Such reconstructions, however, are
computationally expensive because of the data dimensions. In
this paper, a multi-resolution (MR) reconstruction approach is
presented, such that several versions of the data cube can be
recovered at different spatial resolutions, by employing gradient
intensity maps. Simulations show that this approach overcomes
interpolation results in up to 3dB of PSNR in noisy scenarios.

Index Terms—Compressive spectral imaging, Multi-resolution,
Spectral Imaging, Compressed sensing

I. INTRODUCTION

Compressive spectral imaging (CSI) enables the acquisition

of spatial information across multiple wavelengths without

scanning the region of interest or employing large detectors

as required by traditional spectral imaging methods [1]. CSI

optical systems are designed such that the 3D (spatial and

spectral) information is acquired in lower-dimensional sets of

coded projections, i.e. 2-dimensional or single pixel measure-

ments. These occur as the result of the optical phenomena

affecting the input source as it passes through different optical

devices before being integrated by an imaging detector. The

information acquired at the detector is known as compressive

coded projections. Several optical architectures implementing

CSI principles can be found in the state of the art, including:

the coded aperture snapshot spectral imaging system (CASSI)

[2], the dual-coded hyper-spectral imager (DCSI) [3], the

spatial-spectral encoded compressive hyperspectral imaging

system (SSCSI) [4], and the snapshot colored compressive

spectral imager (SCCSI) [5]. In general, the sensing process of

these architectures can be modeled as the linear system given

by y = Hf , where y is the set of coded projections; f is a

vector form of the spatial-spectral data cube F ∈ R
N×N×L

with N ×N pixels of spatial resolution and L spectral bands;

and H is the sensing matrix whose structure and entries

depend on the optical phenomena induced by the employed

devices [6]. Because the number of acquired projections in y is

considerably less than the amount of image voxels to recover,

the underlying spatial-spectral data cube is later recovered

using numerical optimization methods that seek for a sparse

approximation of the data cube θθθ = ΨΨΨT f in a given basis ΨΨΨ
[7], [8], by minimizing a cost function of the type

argmin
θθθ
||y −HΨθΨθΨθ||2ℓ2 + τ ||θθθ||ℓ1 , (1)

with τ as a regularization parameter. Moreover, different cost

functions such as low-rank approximations [9], [10] or denois-

ers in approximate message passing (AMP) [11], [12] can be

also used to recover the underlying data. In spite of the fast

acquisition process enabled by CSI systems, reconstructions

are in general computationally expensive, due to the high

dimensions of the involved data. In addition, traditional CSI

reconstruction approaches aim at recovering the underlying

data cube from the set of coded projections, where the reso-

lution of the reconstruction is as high as the measurements

allow. To date, different strategies have been proposed to

alleviate the computational cost of CSI reconstructions. These

approaches include GPU implementations of reconstruction

algorithms [13], separable sensing operators [14]–[16] and

block-based reconstructions [17]. Furthermore, general multi-

resolution (MR) compressive sensing (CS) frameworks have

been recently proposed to recover lower resolution versions

instead of the full-resolution signal. For instance, the sum-to-

one (STOne) transform proposed in [18] enables fast recon-

structions of image previews by appropriately designing the

sensing matrix. Given that in CSI the structure of the sensing

matrix is determined by the optical configuration of the sys-

tems, STOne concepts cannot be directly employed. Another

approach presented in [19] establishes that low-resolution (LR)

CS reconstructions of an object can be obtained by defining a

pair of down-scaling/up-scaling matrices. However, a method

to recover a higher-resolution approximation from such LR

image is not developed.

This paper presents a multi-resolution (MR) reconstruction

approach for CSI that allows to obtain multiple versions

of the data cube at different spatial resolutions up to the

maximum allowed by the compressed projections, without

applying additional super-resolution methods. Specifically, the

proposed approach obtains an initial LR reconstruction of

the scene at a small scale to estimate the high frequency

components of the next scale reconstruction, such that it can

be recovered by employing super-pixels on the low-frequency

areas of the scene. A gradient intensity image is used to
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develop a decimation matrix that modifies the original sensing

matrix H, to generate the equivalent MR sensing matrix that is

later used in a CS reconstruction algorithm. The process can be

sequentially performed up to the maximum resolution allowed

by the captured projections. Simulations on two different

data cubes with the CASSI architecture are used to test the

performance of the proposed approach.

II. COMPRESSIVE SPECTRAL IMAGING PROBLEM IN

CASSI

The coded aperture snapshot spectral imaging system

(CASSI) [1], [2] is one of the most remarkable CSI archi-

tectures, for this reason it is used in this paper to describe

and test the proposed MR reconstruction approach that will be

presented in Section III. CASSI projections are obtained as the

result of applying two main operations: spatial coding realized

by a coded aperture T (x, y) and dispersion, as illustrated

in Fig. 1. Specifically, the input source f0 (x, y, λ) is first

modulated by T (x, y), where (x, y) represent the spatial

dimensions and λ the spectral components. This modulation

consists on either blocking the light at each spatial location

or letting it to pass through. After that, the encoded source is

spectrally decomposed by the dispersive element, and the 2D

compressed projections are obtained as the integration of the

coded and dispersed source over the spectral dimension at the

focal plane array (FPA).

Fig. 1. Top view schematic representation of the CASSI optical architecture.

Assuming a discrete representation of the input data cube

F composed by L spectral bands, each with N ×N pixels of

spatial resolution, and the pixelated N ×N coded aperture T,

the intensity value captured at the (i, j)-th pixel of the detector

can be written as

Yi,j =
L
∑

k=1

Fi,j−k,kTi,j−k + ωi,j , (2)

where ω is the noise of the system. When several snapshots
{

Yℓ
}K−1

ℓ=0
are captured, their vector forms can be stacked in

a single column y =
[

(

y0
)T

, · · · ,
(

yK−1
)T

]

. Thus, as in

the general case of CSI systems, the CASSI forward model

for acquiring a N × N × L data cube is given by the linear

system

y = Hf , (3)

where f ∈ R
v is a vector form of the data cube with v = N2L,

and H is the sensing matrix accounting for all K snapshots

[20].

III. MULTI-RESOLUTION RECONSTRUCTION APPROACH

Instead of attaining CSI reconstructions at the highest spatial

resolution allowed by the acquired projections, by solving

the problem in (1), this paper proposes to recover multiple

versions of the same data cube at different spatial resolutions.

This approach first assumes that a low resolution version of

the data cube can be obtained as

f∆ = D∆f , (4)

where D∆ ∈ R
v

4∆
×v

is a decimation matrix that yields a N
2∆
×

N
2∆
× L object, with ∆ representing an integer parameter for

the decimation factor. Note that in this work, the decimation is

applied only to the spatial dimensions and, for simplicity the

decimation factor is expressed as a power of 2, which means

that the spatial dimensions of f∆ are 1/2∆ the dimensions of f .

Similarly, the high-resolution spectral image can be obtained

as f = D−1

∆
f∆, where D−1

∆
represents an up-scaling operator,

which is not necessarily the inverse of D∆. Therefore, using

(4) in (3) we can obtain the equivalent sensing model for the

low-resolution data cube as

y = H̃f∆ + ǫ, (5)

where H̃ = HD−1

∆
is the equivalent sensing matrix for

the low resolution scene and, ǫ = H
(

I−D−1

∆
D∆

)

f is an

approximation error due to the down/up-scaling operations

[19]. Then, an estimation of θθθ∆, a sparse representation of

f∆, can be obtained by solving the low resolution problem

given by

argmin
θθθ∆

||y − H̃ΨΨΨ∆θθθ∆||
2

ℓ2
+ τ ||θθθ∆||ℓ1 , (6)

where ΨΨΨ∆ is the sparse representation basis for that particular

resolution. Note that (6) presents a shrinked version of the

minimization problem from (1). The low resolution scene can

be subsequently obtained as the inverse sparse transformation

f̂∆ = ΨΨΨ−1

∆
θθθ∆. To illustrate the error induced by the low

resolution approximation in (5), Fig. 2 presents an example

of normalized ǫ for a test data cube using three different

decimation factors, i.e. ∆ = 1, 2, 3, which correspond to a

half, one quarter and one eight the original resolution. It is

evident that most of the errors are concentrated around high

frequency pixels, which motivates the exploitation of gradient

intensity maps in the up-scaling process.

One way to obtain an up-scaled version of f∆ is to apply

an interpolation algorithm, however, for large decimation fac-

tors, these methods fail on approximating the high frequency

regions of the scene. Thus, the proposed approach exploits the

gradient intensity images of the low resolution reconstruction

to generate a multi-resolution (MR) decimation matrix D∆

such that an up-scaled version of the data cube can be recov-

ered by solving the problem in (6) using the corresponding MR

matrix. Specifically, the MR decimation matrix is built using
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Fig. 2. Low-resolution normalized approximation errors ǫ from (5) for
different decimation factors ∆. The errors are concentrated around the high
frequency regions of the scene.

two different decimation factors, i.e. 2∆ for smooth regions

and 2∆−1 for pixels indexed as edges by the map of intensity

gradient. The algorithm can iterate on this process using the

intensity gradient of the resulting reconstruction to calculate a

new MR decimation matrix, until the maximum resolution is

reached. In the following, the main steps of the proposed MR

reconstruction approach are described. Let f̂∆ be the initial

low resolution reconstruction which can be rearranged as the

data cube F̂∆ =
[

F̂1
∆
, · · · , F̂L

∆

]

, where F̂ℓ
∆

refers to the ℓ-th

spectral band. Then, the intensity gradient map of each spectral

band can be calculated using any edge detection method such

as Canny or Sobel filters. The intensity gradient for the ℓ-th
spectral band is given by the derivatives along the x and y
axes and can be written as

∂F̂ℓ
∆

∂x∂y
= P ∗ F̂ℓ

∆, (7)

where P represents the gradient operator and ∗ a convolution.

Since spectral images typically exhibit high spatial correlation

across bands, the intensity gradient map for the whole data

cube can be expressed as the sum of the L intensity gradients

E∆ =

L
∑

ℓ=1

P ∗ F̂ℓ
∆. (8)

The resulting intensity gradient map E∆ is then used to

estimate the high frequency elements of the up-scaled data

cube with spatial resolution N
2∆−1 ×

N
2∆−1 . Because the spatial

resolution of the data cube to be recovered doubles the current

resolution, its intensity gradient map can be estimated as

E∆−1 = E∆ ⊗ 12, where 12 is a 2 × 2 all-ones matrix, and

⊗ is the matrix Kronecker product. Elements in E∆−1 can

be labeled as edge and non-edge pixels. More specifically,

let C be the set of linear indices corresponding to the edge

pixels in the intensity gradient map. Similarly, denote the set

of linear indices of non-edge pixels as C∁. Note that these

sets account for the indices from all the spectral bands. The

sets C and C∁ are now used to determine the MR decimation

matrix for a factor ∆ − 1, denoted as D∆−1 which allows

the reconstruction of the data cube F̂∆−1. Recall that the

main idea is that D∆−1 employs a decimation factor 2∆−1

for pixels in C (edges) and 2∆ for pixels in C∁ (non-edges).

Therefore, the entries of D∆−1 are determined by the entries

of two different decimation matrices: D̃∆ and D̃∆−1, each

one designed to spatially down-scale all data cube voxels by

factors ∆ and ∆−1, respectively. In general, non-zero entries

in a row of the decimation matrix indicate the linear indices

of the pixels that will be grouped into the super-pixel indexed

by that particular row. Let us first consider the case in which

the i-th pixel belongs to C, i.e. it is part of an image edge.

Accordingly, the i-th row of D∆−1 is obtained by selecting the

i-th row of D̃∆−1. On the other hand, when i does not index

an edge pixel, i ∈ C∁, the i-th row of D∆−1 is a selected row

from D̃∆. Mathematically, the i−th row of the MR decimation

matrix can be written as

(D∆−1)i =







(χχχ∆−1)i D̃∆−1 , i ∈ C

(χχχ∆)i′ D̃∆ , i ∈ C∁

0 , otherwise

, (9)

where (χχχ∆−1)i represents the selection of the i−th row of a

matrix by a circulant permutation matrix. Figure 3 illustrates

a toy example of the MR decimation matrix in (9) for N = 8,

L = 1, ∆ = 2, which means that a 4× 4 data cube would be

recovered in this case. The dotted rectangle highlights a row

corresponding to a non-edge pixel for which the correspondent

row from D̃2 indexed by i′ is assigned to the i−th row of

D1. Similarly, the solid rectangle indicates an edge pixel for

which the i−th row of D̃1 is mapped directly to the i−th row

of D1. Note that the index i′ represents a row mapping due to

the scaling process. The reconstruction of F̂∆−1 can thus be

v = N
2
L

v
4

D
1

v
16

D
2

v = N
2
L

v
4

N

D
1

Fig. 3. Example of the MR decimation matrix D1 generated from the

decimation matrices D̃1 and D̃2. Illustrated matrices correspond to a data
cube of spatial resolution N = 8, and L = 1 spectral band.

obtained solving the problem from (6) using H̃ = HDT
∆−1.

Because smooth regions are recovered at a larger decimation

factor, which means that pixel indices belonging to C∁ lie

on a larger pixel grid, each final spectral band is retrieved by

replicating the recovered smooth pixels in a 2×2 window, and

keeping the edge recovered pixels. It is worth noting that the
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256×256, = 032×32, = 3 128×128, =164×64, = 2 256×256, =1 512×512, = 0128×128, = 264×64, = 3

Fig. 4. Noiseless MR reconstructions from K = 4 snapshots and different decimation factors (∆), along with zoomed portions for (a) Toys and (b) Feathers.

whole process can be generalized for several iterations t =
0, · · · ,∆, such that the decimation factors to recover F̂∆−t

can be written as ∆ − t for edge pixels and ∆ − t + 1 for

non-edge pixels.

IV. SIMULATIONS AND RESULTS

Simulations were performed to test the proposed MR re-

construction approach, using two different spectral data cubes:

Toys and Feathers with 256 × 256 and 512 × 512 pixels of

spatial resolution, respectively, and L = 8 spectral bands [21].

The experiments were performed by simulating the CASSI ar-

chitecture with blue noise coded (BN) apertures [20], varying

the number of snapshots K from 2 to 8. The regularization

parameter was found by cross validation. Figure 4 illustrates

RGB mappings of the recovered data cubes using the proposed

MR reconstruction approach for different decimation factors,

i.e. ∆ = 0, 1, 2, 3. Zoomed portions of each reconstruction

are also included to illustrate the loss of details while the

decimation factor increases. Furthermore, for the case of the

Toys data cube, ∆ = 3 represents an extreme case because a

32×32×8 data cube is obtained, in which shapes are preserved

but details cannot be recovered.

Because interpolations can also be used to upscale low

resolution images, Fig. 5 presents a comparison of average

reconstruction quality measured as the peak signal-to-noise

ratio (PSNR) between the proposed MR reconstruction ap-

proach and results from interpolated low resolution data cubes,

from noisy measurements with two levels of Gaussian noise

SNR= 10, 20 dB. Specifically, low resolution versions of

the data cubes were individually recovered using (6) with

H̃ = HD̃∆ for ∆ = 1, 2, 3. These small data cubes were

afterwards interpolated to a target resolution of 256 × 256
for Toys and, 512 × 512 for Feathers, using a bicubic inter-

polator. These results are compared with the proposed MR

reconstruction approach with ∆ = 3, such that the initial

low resolution approximation exhibits 1/8 of the maximum

attainable resolution. Average PSNR values presented in Fig.

5 are calculated with respect to the correspondent decimated

version of the ground truth. In general, these results show that

the proposed approach provides better reconstruction quality

than interpolation. Also, it can be noted that the interpolation

reconstruction quality increases as the ratio between the initial

and target resolutions decreases. However, the MR reconstruc-

tion approach shows an improvement of up to 3dB of PSNR

with respect to the best interpolation case. Figures 6 and 7

illustrate an RGB mapping of the attained 256×256 Toys and

512 × 512 Feathers reconstructions from K = 4 snapshots,

respectively. In particular, these figures present the MR recon-

structions from ∆ = 3, and the bicubic interpolations from

the lower resolution versions from Fig. 5. It is easy to see that

interpolations are not able to provide accurate reconstructions

of the high frequency components of the scenes.
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Fig. 5. Average reconstruction PSNR as a function of the number of snapshots
K, for 256 × 256 Toys and 512 × 512 Feathers using MR with ∆ = 3,
and bicubic interpolations from lower resolution recovered data cubes and
Gaussian noise with SNR=10, 20.

The cost of CSI reconstructions depends on the dimensions

of the signal to recover. It has been previously shown that

general iterative algorithms that solve (1) perform O
(

KN4L
)

floating point operations per iteration to recover a N ×N ×L
data cube [1]. These operations include matrix products,

matrix pseudoinverses, and sparse transformations. Because
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28.53 dB

23.13 dB24.65 dB

30.01 dB

Fig. 6. RGB profiles of 256 × 256 Toy reconstructions from noisy mea-
surements with SNR=20, for (a) MR-∆ = 3, and interpolations from (b)
128× 128, (c) 64× 64, and (d) 32× 32 reconstructions.

31.67 dB

26.08 dB27.06 dB

30.24 dB

Fig. 7. RGB profiles of 512 × 512 Feathers reconstructions from noisy
measurements with SNR=20 for (a) MR-∆ = 3, and interpolations from (b)
256× 256, (c) 128× 128, and (d) 64× 64 reconstructions.

the proposed approach recovers a N/2∆×N/2∆×L spectral

cube, the number of operations per iteration is reduced to

O
(

KN4L
16∆

)

. The effect on other CS reconstruction formula-

tions is currently under study.

V. CONCLUSIONS

A MR reconstruction approach from compressive spectral

coded projections has been presented. The proposed approach

exploits a map of intensity gradients of a low resolution

reconstruction, obtained from the high resolution projections,

to generate a MR decimation matrix that groups low frequency

areas of the scene into larger super pixels. Thus, multiple

versions of the data cube can be sequentially attained, each one

employing the previous recovered data cube. Simulations show

that the proposed approach improves reconstruction quality

in up to 3dB of PSNR with respect to interpolation in noisy

scenarios. Furthermore, the amount of floating point operations

per reconstruction iteration is reduced by a factor of 1/16∆

with respect to the full resolution reconstruction.
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