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Abstract—In a single speech source noise reduction scenario,
the frequency domain correlation matrix of the speech signal is
often assumed to be a rank-1 matrix. In multichannel Wiener
filter (MWF) based noise reduction, this assumption may be used
to define an optimization criterion to estimate the positive definite
speech correlation matrix together with the noise correlation
matrix, from sample ‘speech+noise’ and ‘noise-only’ correlation
matrices. The estimated correlation matrices then define the
MWF. In generalized eigenvalue decomposition (GEVD) based
MWF, this optimization criterion involves a prewhitening with
the sample ‘noise-only’ correlation matrix, which in particular
leads to a compact expression for the MWF. However, a more
accurate form would include a prewhitening with the estimated
noise correlation matrix instead of with the sample ‘noise-only’
correlation matrix. Unfortunately this leads to a more difficult
optimization problem, where the prewhitening indeed involves
one of the optimization variables. In this paper, it is demonstrated
that the modified optimization criterion, remarkably, leads to
only minor modifications in the estimated correlation matrices
and eventually the same MWF, which justifies the use of the
original optimization criterion as a simpler substitute.

Index Terms—Noise reduction, speech enhancement, Wiener
filter, multichannel Wiener filter (MWF), generalized eigenvalue
decomposition (GEVD).

I. INTRODUCTION

Multichannel noise reduction is an important speech pro-
cessing task in cell phones, hearing instruments and speech
recognition systems. To suppress the environmental noise
while minimizing speech distortion, a crucial operation is the
estimation of a valid frequency domain speech correlation
matrix and noise correlation matrix. The estimated correlation
matrices then define the multichannel Wiener filter (MWF).

The speech and noise correlation matrices are assumed to
agree with the considered scenario, i.e. in a scenario with S
speech sources, the speech correlation matrix is assumed to be
a positive definite rank S matrix. In this paper, we consider a
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single speech source scenario (S = 1). In multichannel Wiener
filter (MWF) based noise reduction, this assumption may then
be used to define an optimization criterion to estimate the rank-
1 speech correlation matrix together with the noise correlation
matrix, from sample ‘speech+noise’ and ‘noise-only’ corre-
lation matrices [1]. In generalized eigenvalue decomposition
(GEVD) based MWF, this optimization criterion involves a
prewhitening with the sample ‘noise-only’ correlation ma-
trix, which in particular leads to a compact expression for
the MWF. However, a more accurate form would include
a prewhitening with the estimated noise correlation matrix
instead of with the sample ‘noise-only’ correlation matrix.
Unfortunately this leads to a more difficult optimization
problem, where the prewhitening indeed involves one of the
optimization variables.

In this paper, it is demonstrated that the modified opti-
mization criterion leads to only minor modifications in the
estimated correlation matrices and eventually the same MWF,
which justifies the use of the original optimization criterion as
a simpler substitute. The conclusions from the experiments
in [1] are by consequence also valid when the modified
optimization criterion is adopted.

The remainder of this paper is organized as follows. In
Section II the MWF is reviewed and the need for a proper
estimation of the rank-1 speech and noise correlation matrix
is discussed. Also some common optimization criteria to
estimate the speech correlation matrix together with the noise
correlation matrices, from sample ‘speech+noise’ and ‘noise-
only’ correlation matrices, are presented. In Section III the
modified optimization criterion is presented together with a
derivation of its optimal solution.

II. PROBLEM STATEMENT

A. MWF Based Noise Reduction

Let N denote the number of observed microphone signals.
Frequency domain processing is considered where the N
complex microphone signals of a frequency bin (bin index
omitted for brevity) are stacked in a vector x, and consist
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of a single speech source component xs and additive noise
component xn:

x = xs + xn. (1)

If the speech and noise signals are assumed to be uncorre-
lated then the correlation matrices

Rxr1
= E{xxH} (2)

Rsr1 = E{xsxHs } (3)

Rnr1
= E{xnxHn } (4)

can be related by

Rxr1
= Rsr1 +Rnr1

(5)

where E{.} is the expected value operator. Here Rsr1 is a
rank-1 matrix for a single speech source scenario.

The MWF is a linear filter estimating a specific desired
signal based on the observed signals x. The desired signal can
be arbitrarily chosen to be the (unknown) speech component of
the first microphone signal eH1 xs, where e1 denotes the first
unity vector. The MWF minimizes the Mean Squared Error
(MSE) criterion:

JMWF (w) = E{|wHx− eH1 xs|2}. (6)

where H denotes the Hermitian transpose.
The optimal solution is given by

wMWF = (Rsr1 +Rnr1
)−1Rsr1e1. (7)

The correlation matrices Rxr1
and Rnr1

are first estimated
by (recursive) time-averaging during ‘noise+speech’ periods
and ‘noise only’ periods respectively, where the distinction
is based on a speech activity detection, assuming that the
noise and speech are (spatially) stationary. This results in the
sample ‘speech+noise’ matrix Rx and the sample ‘noise-only’
correlation matrix Rn. Rsr1 may then be estimated (based
on (5)) as the difference between the sample ‘speech+noise’
correlation matrix Rx and the sample ‘noise-only’ correlation
matrix Rn, i.e.

Rs = Rx −Rn. (8)

However Rs has mostly a rank larger than one, especially
in low SNR scenarios, such that better correlation matrix
estimation methods are necessary. In [1], the estimation of
a positive definite rank-1 speech correlation matrix Rsr1 and
a corresponding noise correlation matrix Rnr1

is presented
based on two different optimization criteria depending on the
sample ‘speech+noise’ correlation matrix Rx and the sample
‘noise-only’ correlation matrices Rn. These are explained in
the next sections.

B. EVD Based Speech and Noise Correlation Matrix Estima-
tion

A first optimization criterion defined in [1] is used to
estimate the correlation matrices as

min
Rnr1

,Rsr1
= rank-1

α ‖ Rx − (Rnr1
+Rsr1 ) ‖2F

+(1− α) ‖ Rn −Rnr1
‖2F (9)

where α is a constant (0 ≤ α ≤ 1) assigning a weight to
the different approximations and ‖ . ‖F denotes the Frobenius
norm. The solution to this problem is based on the symmetric
eigenvalue decomposition [2] of Rx−Rn = KDKH with the
eigenvalues sorted from high to low in D and is given by

Rsr1 = K · diag{D1, 0, ..., 0} ·KH (10)
Rnr1

= α(Rx −Rsr1 ) + (1− α)Rn. (11)

C. GEVD Based Speech and Noise Correlation Matrix Esti-
mation

In the optimization criterion in (9), an unweighted Frobenius
norm with absolute (squared) approximation errors is used.
As suggested in [1], it can be more appropriate to consider
relative approximation errors depending on the noise. To this
end a noise prewhitening operation is included depending on
the GEVD of the matrix pencil {Rx, Rn} [3], [4]:

Rn = QΣnQ
H

Rx = QΣxQ
H

⇒ RxR
−1
n = QΣxΣ−1

n Q−1 = QΣQ−1 (12)

where Q is an invertible matrix, the columns of which are
unique up to a scalar and define the generalized eigenvec-
tors. Σx,Σn and Σ are real-valued diagonal matrices where
Σx = diag{σx1

, .., σxN
},Σn = diag{σn1

, .., σnN
}, and Σ =

diag{ σx1

σn1
, ..,

σxN

σnN
} define the generalized eigenvalues sorted

from high to low.
From the GEVD of the matrix pencil {Rx, Rn}, the

prewhitening matrix is defined as Vn = Σ
−1/2
n Q−1 such that

Rn = (V Hn Vn)−1 and VnRnV Hn = I and (9) is reformulated
as:

min
Rnr1

,Rsr1
= rank-1

α ‖ Vn
(
Rx − (Rnr1

+Rsr1 )
)
V Hn ‖2F

+(1− α) ‖ Vn
(
Rn −Rnr1

)
V Hn ‖2F .(13)

The solution to this problem is based on the GEVD and is
given by

Rsr1 = Q · diag{σx1
− σn1

, 0, ..., 0} ·QH (14)
Rnr1

= Q · diag{σn1
, ασx2

+ (1− α)σn2
, ...

..., ασxN
+ (1− α)σnN

} ·QH . (15)
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As it was stated in [1], the GEVD effectively selects the
mode with the highest SNR and it allows a more reliable
estimation of the rank-1 speech correlation matrix. In the
considered MWF context, the GEVD based estimation out-
performs (in terms of SNR improvement achieved by the
MWF) other correlation matrix estimation methods, like the
first column decomposition or EVD based estimation, at the
cost of a more sophisticated matrix decomposition. Also note
that unlike the EVD-based MWF, the GEVD-based MWF
is completely immune to scaling and linear combining of
the input signals [5], i.e. the output signal and output SNR
is independent of such scaling and combining, which is a
desirable property.

III. MODIFIED GEVD BASED SPEECH AND NOISE
CORRELATION MATRIX ESTIMATION

In stead of using the sample ‘noise-only’ correlation matrix
Rn for the prewhitening as in (13), it may be more accurate
to use the estimated noise correlation matrix, i.e. reformulate
(13) as

min
Rnr1

= (V HV )−1

Rsr1
= rank-1

α ‖ V
(
Rx − (Rnr1

+Rsr1 )
)
V H ‖2F

+(1− α) ‖ V
(
Rn −Rnr1

)
V H ‖2F (16)

where the matrix V defines the prewhitening but is now part
of the optimization problem and connected with the noise
correlation matrix Rnr1

by the constraint

Rnr1
= R1/2

nr1
RH/2nr1

= V −1V −H = (V HV )−1. (17)

Unfortunately the technique used to solve (13) in [1] can
not be used to solve (16). However, as the next theorem
states, the GEVD again forms the solution to this modified
criterion.

Theorem: The matrix Rnr1
and positive definite rank-1

matrix Rsr1 that form the only stationary point of the modified
optimization problem (16) are given by

Rsr1 = Q · diag{σx1
− σn1

, 0, ..., 0} ·QH (18)

Rnr1
= Q · diag{σn1

,
ασ2

x2
+ (1− α)σ2

n2

ασx2 + (1− α)σn2

, ...

...,
ασ2

xN
+ (1− α)σ2

nN

ασxN
+ (1− α)σnN

} ·QH (19)

if σx1
− σn1

≥ 0, else given by

Rsr1 = 0 (20)

Rnr1
= Q(αΣx + (1− α)Σn)−1(αΣ2

x + (1− α)Σ2
n)QH(21)

where Q,Σn,Σx are defined in (12).

Proof: The modified optimization criterion in (16) can be
simplified using (17) leading to

J(V,Rsr1 ) = α ‖ V RxV H − I − V Rsr1V
H ‖2F

+(1− α) ‖ V RnV H − I ‖2F . (22)

Replacing the (unknown) Hermitian matrix V RxV H by its
EVD defining a unitary matrix P and real diagonal matrix Λ
gives

V RxV
H = PΛPH (23)

and

V RxV
H − I = P (Λ− I)PH . (24)

Then it is known from low rank matrix approximation
theory that the optimal positive definite rank-1 matrix Rsr1
is given by

V Rsr1V
H = λmaxumaxu

H
max (25)

with λmax = max({Λi,i − 1}i=1..N , 0), to make Rsr1 pos-
itive definite. Also umax is a column of P and unitary
(uHmaxumax = 1). Here it is assumed that the largest eigen-
value λmax is unique 1, so that umax is uniquely determined
(up to a sign ambiguity). Hence the first part in the r.h.s of
(22) can be rewritten as

‖ V RxV H − I − V Rsr1V
H ‖2F=‖ V RxV H − I ‖2F −λ2max.

(26)

Assume from now on that λmax > 0 and denote the
corresponding largest eigenvalue of V RxV H with Λmax. The
case where λmax = 0 will be discussed at the end of the proof.

The optimization criterion (22) is currently given by

J(V ) = α ‖ V RxV H − I ‖2F −αλmax(V )2

+(1− α) ‖ V RnV H − I ‖2F (27)
= αtr(V RxV

HV RxV
H − 2V RxV

H + I)

+(1− α)tr(V RnV
HV RnV

H − 2V RnV
H + I)

−αλmax(V )2 (28)

where tr() denotes the trace operation. To find possible
stationary points of this non-constrained optimization problem
(only constraint is that V is invertible), the following differ-
ential are defined:

df1(V ) = dtr
(
V RV H

)
= tr

(
d(V RV H)

)
= tr

(
dV RV H + V RdV H

)
= tr

(
RV HdV + dV HV R

)
(29)

1The case where λmax has a multiplicity larger than one is not considered
here for the sake of a compact exposition.
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df2(V ) = dtr
(
V RV HV RHV H

)
= tr

(
d(V RV HV RHV H)

)
= tr

(
dV RV HV RHV H

)
+ tr

(
V RdV HV RHV H

)
+tr

(
V RV HdV RHV H

)
+ tr

(
V RV HV RHdV H

)
= tr

(
(RV HV RHV H +RHV HV RV H)dV

+dV H(V RHV HV R+ V RV HV RH)
)

(30)

df3(V ) = dλ2max(V )

= 2λmaxdλmax(V )

= 2λmaxu
H
maxd(V RxV

H − I)umax

= 2λmax
(
uHmaxdV RxV

Humax

+uHmaxV RxdV
Humax

)
= 2λmaxtr

(
RxV

Humaxu
H
maxdV

+dV Humaxu
H
maxV Rx

)
(31)

where the linear and cyclic properties of the trace operation
are used in (29) - (31) and the derivative of an eigenvalue with
multiplicity of one as discussed in [6] is used in (31).

Now using a result from [7] that if the differential df(V )
can be written as

df(V ) = tr(AT0 dV + dV HA1) (32)

where A0 and A1 may depend on V and T denotes the
transpose operation, then the partial derivatives of f(V ) with
respect to the complex-valued matrix V and to the complex
conjugate of V (denoted with V ∗) is given by

∂f(V )

∂V
= A0 (33)

∂f(V )

∂V ∗ = A1. (34)

Combining (29), (30) and (31) with (34), an equation for
stationary points of J(V ) is obtained as

∂

∂V ∗ J = 2αV RxV
HV Rx − 2αV Rx

+2(1− α)V RnV
HV Rn − 2(1− α)V Rn

−2αλmaxumaxu
H
maxV Rx

= 0. (35)

Dividing both sides by 2 and multiplying with V Humax
gives

0 = αV RxV
HV RxV

Humax − αV RxV Humax

+(1− α)V RnV
HV RnV

Humax

−(1− α)V RnV
Humax

−αλmaxumaxuHmaxV RxV Humax

= αΛ2
maxumax − αΛmaxumax

+(1− α)(V RnV
HV RnV

H − V RnV H)umax

−α(Λmax − 1)Λmaxumax. (36)

This simplifies to

(V RnV
HV RnV

H − V RnV H)umax = 0. (37)

Hence umax is an eigenvector of V RnV
HV RnV

H −
V RnV

H = V RnV
H(V RnV

H−I) = (V RnV
H−I)V RnV

H

with eigenvalue zero, so also an eigenvector of V RnV H with
eigenvalue one or zero. Since Rn and V are assumed to be
invertible, V RnV H must be nonsingular and hence umax
must be an eigenvector of V RnV H with eigenvalue one. If
umax is an eigenvector of V RxV H and of V RnV H , it is
also an eigenvector with eigenvalue Λmax of

(V RxV
H)(V RnV

H)−1 = V RxR
−1
n V −1. (38)

By substituting the GEVD (12) of {Rx, Rn} in (38), the
eigenvalue decomposition of (38) is obtained as

V RxR
−1
n V −1 = Ṽ (ΣxΣ−1

n )Ṽ −1 (39)

with Ṽ = V Q.
Hence umax is the normalized version the column of Ṽ

corresponding to the eigenvalue Λmax. Assume that σx1

σn1
=

Λmax. Then umax can be written as

umax =
Ṽ e1

‖Ṽ e1‖
=

1

σ
1/2
v1

Ṽ e1. (40)

Plugging (40) and (12) into the stationary point equation
(35), results in

0 = αṼ ΣxṼ
H Ṽ ΣxQ

H − αṼ ΣxQ
H

+(1− α)Ṽ ΣnṼ
H Ṽ ΣnQ

H − (1− α)Ṽ ΣnQ
H

−αλmax
σv1

Ṽ e1e
H
1 Ṽ

H Ṽ ΣxQ
H (41)

Since QH and Ṽ are invertible, right-multiplying with Ṽ −1

and left-multiplying with Q−H gives

0 = αΣxΣV Σx + (1− α)ΣnΣV Σn − α
λmax
σ2
v1

e1e
H
1 ΣV Σx

−αΣx − (1− α)Σn (42)

where ΣV = Ṽ H Ṽ and σv1 = (ΣV )1,1.
It can be verified that in general ΣV has to be diagonal

(ΣV = diag{σv1 , .., σvN }) to solve (42). Using the fact that
λmax = Λmax− 1 =

σx1

σn1
− 1, finally ΣV is obtained as given

in (43) at the top of the next page.
The optimal solution is thus shown to be

V = Σ
1/2
V Q−1 (44)

Rnr1
= (V HV )−1 = QΣ−1

V QH (45)

Rsr1 = V −1umaxλmaxu
H
maxV

−H

=
1

σv1
QΣ

−1/2
V Σ

1/2
V e1(

σx1

σn1

− 1)eH1 Σ
1/2
V Σ

−1/2
V QH

= Q · diag{σx1
− σn1

, 0, ..., 0} ·QH (46)
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ΣV = diag{ασ2
x1

+ (1− α)σ2
n1
, ασ2

x2
+ (1− α)σ2

n2
, ..., ασ2

xN
+ (1− α)σ2

nN
}−1

(


ασx1 + (1− α)σn1 0 · · · 0

0 ασx2 + (1− α)σn2 · · · 0
...

...
. . .

...
0 0 · · · ασxN

+ (1− α)σnN

−

αλmaxσx1

0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

)

= diag{σ−1
n1
,
ασx2 + (1− α)σn2

ασ2
x2

+ (1− α)σ2
n2

, ...,
ασxN

+ (1− α)σnN

ασ2
xN

+ (1− α)σ2
nN

}. (43)

It remains to show that Λmax is equal to the largest general-
ized eigenvalue ratio σx1

σn1
. This can be seen from the fact that

Λmax is the largest positive eigenvalue of V RxV H = PΛPH .
Indeed the eigenvalues of V RxV H can be determined using
(12) and (44):

Λ = diag{σx1

σn1

, {
α
σ2
xi

σ2
ni

+ (1− α)
σxi

σni

α
σ2
xi

σ2
ni

+ (1− α)
}i=2..N}. (47)

It suffices that σx1

σn1
(≥ 1) ≥ max({ σxi

σni
}i=2..N ) since then

α(
σx1

σn1

− 1)
σx2

i

σn2
i

+ (1− α)(
σx1

σn1

− σxi

σni

) ≥ 0 ∀i (48)

or equivalently

σx1

σn1

≥
α
σ2
xi

σ2
ni

+ (1− α)
σxi

σni

α
σ2
xi

σ2
ni

+ (1− α)
∀i. (49)

From this it is seen that σx1

σn1
is the largest eigenvalue of

V RxV
H .

The previous derivation up to (43) is also valid for the trivial
case where λmax = 0. For this case the solution is obtained
as

Rsr1 = 0 (50)

Rnr1
= Q · diag{

ασ2
x1

+ (1− α)σ2
n1

ασx1
+ (1− α)σn1

,
ασ2

x2
+ (1− α)σ2

n2

ασx2
+ (1− α)σn2

, ...

...,
ασ2

xN
+ (1− α)σ2

nN

ασxN
+ (1− α)σnN

} ·QH

= Q(αΣx + (1− α)Σn)−1(αΣ2
x + (1− α)Σ2

n)QH .(51)

where the optimal Rnr1
is simply a non-linear interpolation

depending on α between Rx and Rn. �

Remark: An extension of the proof to a scenario with S
speech sources is possible in a similar way where the optimal
rank-S speech correlation matrix RsrS is then given by:

RsrS = Q · diag{σx1
− σn1

, ..., σxS
− σnS

, 0, ..., 0} ·QH(52)

where σx1
− σn1

, ..., σxS
− σnS

are the S largest generalized
eigenvalue differences.

While the optimal Rsr1 in (18) is the same as in (14),
the Rnr1

in (19) is different from (15). The resulting α-
dependent interpolation between the generalized eigenvalues
is more involved in (19) than the simpler linear interpolation
in (15). However the resulting MWF (7) is straightforwardly
shown to be the same in both cases and is given by

wMWF = Q−H · diag{σx1
− σn1

σx1

, 0, ..., 0} ·QHe1. (53)

This justifies the use of the original optimization criterion
(13) as a simpler substitute. Formula (53) demonstrates also
that the GEVD based wMWF is independent of the value of
α in the optimization criterion, which is a desirable property.
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