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Abstract—In this paper, we propose image analysis based
methods for estimating fish tail beat frequency, which is an
indicator of fish energy consumption at fish passage structures.
For this purpose, average magnitude difference and autocorrela-
tion function based periodicity detection techniques are utilized.
Actual fish images are acquired using a visible range camera
installed in a brush type fish pass in İkizdere River, near Rize,
Turkey, which is very rich in biodiversity. Results show that
image analysis based periodicity detection methods can be used
for fishway efficiency evaluation purposes. To the best of authors’
knowledge, this is the first study that automatically estimates
fish tail beat frequency using image analysis. The findings of this
study are expected to have implications for fish monitoring and
fishway design.

Index Terms—fish detection, fishway, frequency detection, tail
beat frequency, environmental monitoring

I. INTRODUCTION

Today, construction of man-made structures in rivers are
in the increasing trend with the growth of the world popu-
lation and energy consumption [1]. Flow regime and other
hydraulic and physical characteristics of rivers are directly
affected by these man-made structures. These physical changes
like flow regime alter ecological sustainability of rivers and
streams [2]. Structures like weirs or dams have negative
effects on biodiversity of river ecosystem including upstream
fish population.They cause the obstruction of fish migration.
To overcome negative effect of dams, one common solution
used is the construction of the appropriate fishways in dams.
Patterns of the movements of the targeted fish species in
the fishway should be matched with the natural patterns in
habitat of the same species. Because of this, hydraulic and
kinetic measurements for fish movement analysis is required
for the evaluation of fishway. The importance of fish tail beat
kinematics in swimming performance of aquatic species is
shown in [3], where optimum Strouhal number is calculated
for 53 different species of aquatic animals. More recently,
special hydraulic and biological parameters have been used

in works [4] and [5] for improving fishway design. In [5], fish
tail beat kinematics, Strouhal number in particular,

Stfish = fTB
λ

U
(1)

is shown to be important criterion for fishway design. Here,
fTB , λ, and U denote fish tail beat frequency, tail beat
amplitude and fish swimming speed respectively whereas the
Strouhal number is denoted as Stfish. In spite of the recent
improvements, evaluation for the true performance of the
fishway is still cumbersome, due to the lack of adequate tools
and data [6], [7]. In this work, we proposed signal processing
based new methods for the measurement of fish behaviour for
the fishway proposed in [8]. In addition to optical data from
the work of brush based fishway proposed in [8], we evaluated
our fish detection technique using research videos from Lauder
Lab [9], [10] and analyzed tail beat frequency for the analysis
of fish movement in Kármán vortex which is also generated in
brush based fishway. View of the fishway structure studied in
this work can be seen in Fig. 1. Our method can be generalized
to other fishway systems by using standard 60 fps underwater
cameras and proper setup in fishway. The work in [11] focused
on fish motion detection and aeration detection using SURF
key-points and k-nearest neighbors classifier in the videos
of territorial and stationary fish. In [12], fish detection and
recognition is performed using Convolutional Neural Networks
(CNN) in unconstrained underwater videos. In [13], CNN
based approach is used in fish foreground segmentation in
order to count fish from footages collected in fishing trawlers.
Texture and color based analysis of underwater videos and fish
counting system is proposed in [14]. More similar works in the
vision-based fishway analysis are done in [15], [16]. In [15],
a system that provides fish velocities in fishway by detecting
fish region with special type of Artificial Neural Networks
(ANN), called Self Organizing Maps (SOM) is developed.
In [17], 3D fish tracking system based on Long Short-Term
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Fig. 1. Brush based fishway model used in experiments.

Memory (LSTM) network is proposed. Another similar work
is done in [18], where fishway flow field is calculated by means
of Particle Image Velocimetry (PIV) and autocorrelation is
used for manually detecting fish tail beat frequency in image
sequences. Our contribution is to provide further investigation
on measurement of fish tail beat frequency using signal pro-
cessing based methods including the comparison of Average
Magnitude Difference Function (AMDF) and Autocorrelation
Function (ACF) based techniques.

II. FISH DETECTION

Fish detection in underwater videos of unconstrained and
cluttered environment is a challenging process due to the high
turbulence, overlapping objects and moving particles such as
blister, bush in water as seen in Fig. 2. Because of that,
proper camera setup and special constraint in background is
an important factor that makes fish segmentation task easier
for fishway analysis. However, these constraints should not
interfere with the natural behavior of fish, as well. For this
purpose, we performed fish segmentation on videos captured
from fishway camera setup and other videos that includes
Karman vortex street conditions acquired from Lauder Lab
[9], [10].

Fig. 2. Sample image taken from camera setup in fishway.

Similar to fish detection system in [14], we investigated
traditional and recent background subtraction techniques for
detecting fish regions.

1) Frame Difference: First approach we analyzed was
frame difference method which calculates the difference be-
tween current frame and reference frame and thresholds the
result as foreground object. Adaptive form of frame difference
method by using dynamic thresholding and background update
method is as in the following formula [14]:

Bn(x, y) = (1− α)Bn−1 + αCFn(x, y) (2)

where Bn, CFn is nth background image and current frame
respectively and α is used as an background update factor.
They combined this method with the Adaptive Gaussian
Mixture Model proposed in [19] using ”AND” operation for
more robust segmentation [14]. However, our experiments
showed that ”AND” operation gives worse results because
of the inability of the moving average detection method in
highly unconstrained scenes. So, Adaptive GMM algorithm
in single use was better in handling complex environment. In
this probabilistic algorithm, mixture of Gaussians is fit to each
single pixel and the needed number of components per pixel
is automatically selected in the background update process.

2) ViBe Algorithm: We further investigated recent ap-
proaches since the accuracy of contour area of fish during
segmentation is important when calculating tail beat frequency.
We compared GMM based and other background subtraction
approaches with the aid of the recent survey performed in [20].
Sample-based algorithm called Visual Background Extractor
(ViBe) proposed by Barnich et al. [21] performed better in
our tests and it was robust enough in the high water turbu-
lence conditions. Therefore, we chose ViBe algorithm for fish
segmentation. After applying median filter and shape based
(aspect-ratio e.g.) post-processing operations to the detected
foreground areas, connected component labeling operation is
performed to group regions. Final result of fish detection on
an ordinary underwater video [22] can be seen from the Fig.
3.

III. FISH TAIL PERIODICITY DETECTION

The goal of this section is to analyze fish tail beat movement
by quantifying recurrence in the tail regions from an image
sequences. In our case, fish tail beat movement in a video can
vary in different views and angles of fish. Therefore, rotation,
translation and scale invariance is important in periodicity
detection techniques. We used self-similarity based techniques
as in [23], [24], since they are robust against variance in
different views. In the following subsections we described 2
efficient techniques, Average Magnitude Difference Function
(AMDF) and Autocorrelation respectively, for tail beat peri-
odicity detection.

A. Average Magnitude Difference Function

Average Magnitude Difference Function is calculated by
computing total difference between signal and its lagged
version. AMDF mostly used in the periodicity detection of 1D
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(a) Frame Difference (b) Adaptive GMM

(c) ViBe (d) Post-processing (ViBe)

(e) Detections with ViBe

Fig. 3. Comparisons of detected fish regions with different techniques.

signals such as pitch detection of audio signals [25]. AMDF is
used in the work of Gunay et al. [24] for detecting frequency
of fire in order to eliminate artificial flashing lights and reduce
false alarms in video based wildfire detection. We described
scheme of AMDF based periodicity detection in Algorithm
1. Since periodicity of the signal lies between the cut points
of AMDF magnitudes, we calculated second derivatives of
AMDF magnitudes in order to find cut points as discussed in
Section IV.

Algorithm 1 Detect periodicity using AMDF
1:
2: procedure AMDF(ImageBuffer, BufferSize)
3: k = BufferSize
4: initialize array amdfMagnitudes← 0
5: for each integer l in k do
6: initialize matrix SumMatrix← 0
7: for each integer n from 0 to k − l do
8: SumMatrix ← SumMatrix +
ImageBuffer[n+ l]− ImageBuffer[n]

9: end for
10: amdfMagnitudes[l] = mean(SumMatrix)
11: end for
12: Return max(secondDerivative(amdfMagnitudes))
13: end procedure

B. Autocorrelation Function

Autocorrelation is a function that identifies correlation of
signal with its lagged version. Autocorrelation function is
useful for identifying an appropriate time series model of
a signal. For a 2D discrete signal x(m,n), Autocorrelation
Function (ACF) is calculated using eq. (3) where M and N
correspond to dimensions of the signal and x(m,n) is its
complex conjugate.

ACF (i, j) =
1

M

1

N

M−1∑
m=0

N−1∑
n=0

xm,nxm+i,n+j (3)

The value of ACF (i, j) increases when x(m,n) gets similar
to x(m+i, n+j), and it will have peaks at periods of x(m,n).
ACF calculation has quadratic time complexity in time domain
when eq. (3) is used. Similar to convolution, ACF can be
calculated in more efficient way with dot product in frequency
domain using Fast Fourier transform (FFT). For input signal
x(n), ACF is computed with FFT as follows:

FR(f) = FFT (x(n))

SR = FR(f)F∗
R(f)

ACF () = IFFT (SR)

(4)

F ∗ denotes complex conjugate of F and IFFT denotes
Inverse Fast Fourier transform. We used eq. (4) in our approach
for reducing complexity of ACF to O(nlog(n)) time.

IV. EXPERIMENTS

We performed several preliminary tests on fish segmentation
techniques discussed in Section II, since false alarms in tail
segments directly affect the success of the tail frequency
detection. Therefore, we used manually collected fish segmen-
tation masks for highly unconstrained videos obtained from
cameras in fishway when accuracy of fish detection algorithm
is insufficient. In order to evaluate the performance of our
tail beat frequency detection system we collected ground truth
from videos by inspection. Fish tail oscillation between the
opposite end points from time t0 to t1 is shown in Fig.4.
We evaluate tail periodicity as a time difference between two
opposite end points denoted by T as shown in Fig.4. Tail beat
frequency fTB can be denoted as inverse of periodicity:

T = |t1 − t0|
fTB = 1/2T

(5)

We first compute tail beat periodicities with proposed meth-
ods. Then, using sampling rate of video we derive frequency
using eq. 6, where fTB , fps and Frinterval denotes fish tail
beat frequency, video frame rate and frame interval (periodic-
ity) computed by AMDF or ACF, respectively.

fTB = fps/Frinterval (6)

Test results of detected frequencies in AMDF and ACF meth-
ods are given in Table I. Strouhal number is calculated with
respect to eq. (1). Among the test videos, ’rize1.mp4’ video
contains the lowest tail beat amplitude and highest tail beat
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Fig. 4. Tail beat time points (t0 and t1) for determining the tail beat
periodicity. Here, U represents flow speed.

frequency movements. Estimation in the lower tail amplitude
movement is a harder case due to the smaller temporal
difference in video sequences. It can be seen from the results
of the ’rize1.mp4’ video which has the lower accuracy for both
methods compared to other samples. Temporal distribution of
AMDF and ACF magnitudes computed from fish tail regions
in video named ’troutfs.avi’ can be seen in Fig. 5. Interval
between the cut points in AMDF graph indicates periodicity of
fish tails. Similarly, periodicity can be seen intuitively between
the peaks of ACF magnitudes. Comparison of the two methods

(a)

(b)

Fig. 5. Plots corresponding to AMDF (a) and ACF values (b) in fish tail
regions.

by means of the mean squared error is given in Table II.

V. CONCLUSION

Efficient fishway design has become increasingly important
with the growing human activity at global scale in river

TABLE I
EXPERIMENTS OF FISH TAIL BEAT FREQUENCY DETECTION.

Videos Troutfs.avi rize1.mp4 uvs-012.avi
Frame Rate (fps) 30 60 25
Number of Frames 159 660 450
Strouhal Number 0.042 0.3 1.1
AMDF (Hz) 0.882 2.35 1.398
ACF (Hz) 0.87 2.5 1.471
Ground Truth (Hz) 0.943 3 1.428

TABLE II
MEAN SQUARED ERROR OF AMDF AND ACF METHODS.

Method Total Number
of Frames MSE

AMDF 1269 0.142
ACF 1269 0.086

ecosystem. Lack of adequate data and tools for identifying
biological, hydraulic, and other physical parameters is the
main challenge in fish passage design.

In this paper, we proposed image analysis based methods
for fish tail beat frequency estimation. Tail beat frequency is an
indicator of fish energy expenditure and swimming speed, and
it is a parameter of the Strouhal number. Experiments suggest
that proposed image processing based fish tail beat frequency
estimation approach may be utilized for fish passage analysis.
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