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Abstract—Normalization is an important step for different
fusion, classification, and decision making applications. Previous
normalization approaches considered bringing values from differ-
ent sources into a common range or distribution characteristics.
In this work we propose a new normalization approach that
transfers values into a normalized space where their relative
performance in binary decision making is aligned across their
whole range. Multi-biometric verification is a typical problem
where information from different sources are normalized and
fused to make a binary decision and therefore a good platform to
evaluate the proposed normalization. We conducted an evaluation
on two publicly available databases and showed that the nor-
malization solution we are proposing consistently outperformed
state-of-the-art and best practice approaches, e.g. by reducing
the false rejection rate at 0.01% false acceptance rate by 60-
75% compared to the widely used z-score normalization under
the sum-rule fusion.

I. INTRODUCTION

Normalization is essential in a wide range of statistical
based solutions where measurements have different origins,
or are calculated on different scales. Information fusion, more
specifically multi-biometric fusion, is one of these applications
where combined information should have a common measure
of inference in the fusion process [1]. Biometric verification
is a typical binary classification problem where comparisons
between reference and probe captures have to be classified into
genuine or imposter comparisons. This is usually achieved by
thresholding the comparison score between these captures.

Previous normalization solutions focused on aligning the
measurement values (scores) of different origins to fit in
a predefined range. Other solutions extended this concept
to bring these values to common distribution characteristics
[2]. A modification to some of the traditional normalization
approaches have been proposed to anchor one point in the
values distributions based on the performance it induces [3].
However, due to the diverse performance behavior around
these single performance points, the performance alignment
between different sources is not achieved on other points.

This work presents a normalization approach aiming at
transferring the score values into a space where a similar
value from a difference source will induce similar relative
performance, and thus its interpretation in further processing
steps (e.g. fusion). This is done by considering the relation
between the performance and score values, represented by the
half total error rate (HTER) at different score thresholds, and
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trying to normalize these values so they will achieve such a
relationship with common properties.

The proposed normalization approach can be utilized in any
problem where the normalized values aim at influencing a
binary decision, such as biometric verification. The proposed
approach is evaluated along with a number of state-of-the-
art and baseline approaches on two publicly available multi-
biometric score databases, the XM2VTS LP1 and LP2 [4]. The
evaluation results proved consistent superiority of the proposed
approach under different experimental settings with the false
rejection rate (FRR) at 0.01% false acceptance rate (FAR)
reduced by 60% and 75% on the LP1 and LP2 databases when
compared to the z-score normalization and by 71% and 81%
when compared to min-max normalization under the sum-rule
fusion.

II. RELATED WORK

Different normalization approaches have been suggested in
statistical applications, some focus on a unified scale and
others extended this into achieving a common probability
distribution. Min-max normalization is a simple technique to
rescale the range of data to fit into a [0,1] range and it only
depends on the minimum and maximum values of the training
data, which makes it vulnerable to outliers. It also does not
consider the nature of the distribution of the values. Due to its
simplicity, min-max normalization was used regularly in score-
level multi-biometric fusion [5][6][7]. The median absolute
deviation normalization (MAD) tries to capture information
about the values distributions by considering their median and
median absolute deviation assuming a Gaussian distribution
of the data. MAD was popularized by the work of Hampel
in 1974 [8][9]. Just like MAD normalization, z-score nor-
malization tries to unify the normalized values distribution
based on their standard deviation and mean value [2]. z-score
transforms the values to have a standard deviation of 1 and a
mean value of zero. TanH was introduced by Hample et al.
[10] and is based on the standard deviation and mean value
of the genuine comparisons values in a way that reduces the
influence of the points at the tails of the distribution. Just
like the previously presented normalization approaches, TanH
construct no clear link between the normalized values and their
influence on the performance and thus their real effect in a
fused system. A work by Jain et al. [6] provided a thorough
study of these classical normalization approaches and their
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effect on the multi-biometric fusion process emphasizing the
normalization critical role.

A simple link between comparison score normalization
and multi-biometric verification performance was previously
proposed by Damer et al. [3]. This work described modi-
fications to min-max, TanH, and MAD normalizations that
align one performance related point (anchor), namely the
threshold at equal error rate (EER), in the distributions of
different sources and didn’t consider the relation between
the scores and the performance beyond this point. These
approaches were noted as performance anchored normalization
(PAN) and the three variations are abbreviated as PAN-min-
max, PAN-TanH, and PAN-MAD. Two works by Kabir et al.
proposed modifications to the PAN-min-max normalization by
proposing anchor values calculated from comparison scores
after neglecting possible outliers [11][12]. The first proposed
anchored value is based on the mean comparison score value
(noted as anchored min-max, AMM [12]) and the second
included the standard deviation of these values (improved
anchored min-max, IJAMM [11]). However, these works didn’t
consider any link between score values and performance.

III. METHODOLOGY

The goal of this work is to normalize biometric comparison
scores so that common values from different sources would
have common relative inference on performance, and thus
a common interpretation. This also applies to normalizing
any measurement that is intended to be used in a binary
stump decision. To achieve this goal, score values have to
be transformed so that a certain relation between these values
and a measure of performance is similar after normalization
for different sources. A good candidate for such a relation is
the one between the score values (seen as a decision threshold)
and the HTER as a measure of performance.

0.5 — HTER(stn)

Sm Sth

Fig. 1: Modeling the relation between performance (HTER) and score
values (s¢r) shown by the solid curve. The dotted curves extends to
the left and right to simulate two Gaussian distributions and their
standard deviations, o, and og.

HTER is the average of the two trade-off error rates, the
FAR and FRR of a biometric verification system (or any
binary decision maker) at a certain operation point (decision
threshold). This corresponds to the false positive rate (FPR)
and false false negative rate (FNR) rates usually used to
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Fig. 2: Different strategies to assign the normalization standard
deviation oy around s,, given o, and og.

evaluate binary classification systems. The HTER(s:,) is
a function of decision threshold s;;, which corresponds to
a comparison score threshold in biometric verification. A
distinctive value in the HT E'R(syy,) is the minimum half total
error rate (minHTER) value that occurs at the certain decision
threshold sy, = .

An example of a typical HT' ER(s¢y,) is shown in Figure
1, to facilitate an easier explanation this figure plots 0.5 —
HTER(st,). The maximum HTER value occurs on the edges
of the score values range and is equal to 0.5, this is because a
threshold set at the edges of the range would produce a very
biased decision leading to one of the trade-off errors (FAR
and FPR) to be 100% and while the other is 0%. Splitting
the 0.5 — HT ER(sy,) curve into two parts along the vertical
line sy, = s, results in two curves (right and left) seen in
solid line (orange and blue) in Figure 1. Each of these curves
can be modeled as a part of a Gaussian distribution and thus
can be associated with a standard deviation (ocr and o) as
follows given that S set of all scores sy,

2 > (a(si)(si —sm)®), ()

2
0- =
: (Xsies, alsi)) — 1 SiESL

SL:{Si€S|si:SnLin+d'i§SM7Vi€NO}~ (2)

2 S (g5 — 5m)D)s B)

o =
(Coeondls) 1,2
Sp={5i €S|si = Smaz —d 1> sm,Vi € No}, (@)
where

q(si) =0.5 — HTER(s;), 5)

d — |Sma1 N 3mzn| ) (6)
where the number of samples measured from the HTER curve
is N, and have to be chosen large enough to enable accurate
estimation of oy, and oy (in our experiments, N=1000). S;,in
and S, are the minimum and maximum comparison scores
in the development data of the biometric source.

Taking the previous definitions into account, a transforma-
tion should be defined to achieve a common relation between
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Fig. 3: The genuine and imposter score distributions and the HTER(s:) of two biometric sources before normalization, after z-score,
PAN-min-max, and the proposed p-score (cont.) normalization. The two biometric sources are from the XM2VTS LP2 database, the top 8
plots are of the XM2VTS-PL2 face expert DCTb-GMM, the bottom eight plots are of the XM2VTS-PL2 voice expert LFCC-GMM [4].
Notice the similarity between the plots after p-score normalization from both sources, which is not the case for other normalizations.

score values and performance (HTER), and thus a common
0.5— HTER(sy,) curve. A computationally convenient com-
mon 0.5 — HTER(sy,) function can be initially based on
one with a standard deviation of one and a mean value of
Sm = 0. To achieve this, a transformation similar to the z-
score normalization can be defined to transform any score
value s; € § into s, € S’ in the normalized space

S; — Sm 1

"1-2.-minHTER’

(7

s =

ON

where o is a normalization standard deviation derived from

the properties of the HT ER(s;,) function. The second term

uses minHTER to adapt to sources with different levels of

performance and thus different heights of HT ER(sy;,) peaks.

An obvious choice of o is o, for the score values below s,
and op for the values higher than this threshold as follows

which will be referred to as a step transition and it may lead
to some irregularities around the performance sensitive area
around s,,. To overcome this step change in oy values, two
additional forms of transition are proposed, a linear one and
a continuous one. For a linear transition, o is described as

oL if 5; <, — Bor =7y
IN = (URigﬁL();:—:cle)JrﬂgL) tor ifrp <s;<rg
OR if s; > 8, + Por =TR

(©))

here 3 controls how fast do the vale reach or and o, when
moving away from s,,. For a smoother transition around s,
a continuous function is defined based on an asymmetrical
shifted sigmoid as

- L if 85 > s, ) on =g (si|op, L8, sy — Bor, Sm, €) — ZLEZE (10)
or if si <sm 7 +9g (sl | %a OR; Smy Sm + BOR7 6) )
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where
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holds for for |[A — B|> 2¢. 8 controls how fast do the value
reachs or and or when moving away from s,,, while € is
a small number (¢ > 0) controls how horizontal (flat) is the
function around s,, and is a function of oy and o, € =
v|or —or| to enhance adaptability. In the experiments carried
out in this work, these parameters where set so that 5 = 0.5
and v = 0.001, changing both parameters in the range § =
[0.25,0.75] and v = [0.01,0.0001] didn’t produce significant
or systematic effect on performance.

Figure 2 visualizes how o develops from o, to o around
Sm In a step, linear, and continuous function. Based on
these three approaches to calculate o and Equation 7, scores
can be normalized so that each score value from any source
will have a relatively similar performance influence (if used
as a decision threshold) and thus have a similar interpretation.
This proposed performance aligned normalization approach
will be referred to as p-score.

IV. EXPERIMENT AND RESULTS

Experiment Settings: for the development and evaluation
of the proposed solution, two parts of the XM2VTS score-
level fusion Database were used, LP1 and LP2 [4]. LP1 and
LP2 contain comparison scores by different face and voice
baseline algorithms. LP1 contains eight score sources (5 face
algorithms and 3 voice algorithms) while LP2 contains five
sources (2 face algorithms and 3 voice algorithms). LP1 used
three training captures per subject while LP2 used four. For
more details about the face and voice comparison algorithms
that produced the scores, one can refer to the work of Poh
et al. [4]. The publicly available database contains two parts,
developments and evaluation. Score normalization parameters
for each biometric source, in both LP1 and LP2, were obtained
from the development data. The results and performance
evaluation discussed later are obtained from the evaluation
data. The evaluation is performed by fusing all available
sources in each database under the verification scenario.

Different normalization approaches mentioned in Section II
are considered. Namely, these approaches are Min-max [6],
MAD [8], z-score [2], TanH [10], PAN-min-max [3], PAN-
MAD [3], PAN-TanH [3], AMM [12], and IAMM [11]. After
normalization, the comparison scores are fused by simple
sum-rule fusion [6] and two weighted-sum fusion approaches,
the equal error weighting (EERW) [6], the overlap standard
deviation weighting (OLDW) [13]. The weights are calculated
based on the development data. A more detailed description of
each of the fusion and normalization baselines can be obtained
form the corresponding references.
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Results: a visual comparison between some of the baseline
normalization techniques and the proposed one is presented
in Figure 3. This figure shows the genuine/imposter score
distributions for two biometric sources before normalization
and after normalization by z-score, PAN-min-max and the
proposed p-scor (cont.). The performance relation to the score
values is also presented as plots of the HT ER(s,). The
HTER(sy,) plots of both sources after p-score normalization
visually similar, unlike other normalization approaches, which
confirms the goal of the proposed normalization by bringing
different sources into a common mapping between score
values and performance. This mapping is reflected on the
score distributions that have similar properties after p-score
normalization.

The verification performance of the proposed solution is
presented as FRR values at fixed FARs. This allows perfor-
mance comparison at different operation points and might be
of interest for users with different performance needs. The
minHTER is also presented as a general and comparable one-
value measure of the evaluation performance, lower minHTER
values corresponds to higher performance. These values are
listed in Table I for all the experiment setups discussed
earlier, including the two databases, three fusion approaches,
nine baseline normalizations, and the three versions of the
proposed p-score normalization. The table shows that the
proposed p-score (cont.) achieved the lowest FRR and lowest
minHTER consistently, coming second only in one out of
eighteen measures. Other normalization approaches had mixed
performances across databases and experimental settings such
as the PAN-TanH performing good on the LP1 database where
the AMM performed relatively poorly, but vice versa on the
LP2. Without a weighting influence, the proposed p-score
(cont.) reduced the FRR at 0.01%FAR for the LP1 and LP2
databases by 71% and 60% compared to PAN-min-max, 75%
and 77% compared to TanH, and 60% and 75% compared
to z-score. Weights induce more information into the fusion
process and thus bringing the performance to its limits, such
as in the OLDW case, which leads to a closer performance by
different normalizations. The behavior of o have to adhere
to two criteria, first is to be smooth close to s,,, to assure no
sudden change in this performance sensitive area, and second,
to move fast to or and o when moving away from s,
to achieve the goal of a common score value-performance
relation. The continuous solution satisfies the first criteria
best, the step satisfies the second one, and the linear satisfies
both criteria poorly. This can explain the results where the
continuous solution performed best, closely followed by the
step and the linear ones.

V. CONCLUSION

This work presented a new outlook on the normalization
problem essential to prepare information for further processing
in fusion or classification. Assuming that the normalized
values will take part in a binary decision making process,
the normalization approach we presented here transfers the
normalized values from different sources into a space where
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sum-rule EERW-sum OLDW-sum

0.01%FAR 0.001%FAR minHTER 0.01%FAR 0.001%FAR minHTER 0.01%FAR 0.001%FAR minHTER

min-max 3.50% 8.00% 0.540% 3.50% 4.75% 0.432% 1.00% 2.25% 0.178%
MAD 11.25% 13.50% 1.568% 12.50% 14.75% 1.584% 1.00% 2.25% 0.178%
TanH 4.00% 8.50% 0.492% 2.50% 4.50% 0.379% 4.00% 6.75% 0.344%
T zscore 2.50% 5.75% 0.473% 1.25% 3.25% 0.346% 1.00% 2.25% 0.178%
—~  PAN-min-max 3.50% 6.25% 0.515% 1.50% 4.25% 0.405% 1.00% 2.00% 0.190%
2 PAN-TanH 1.00% 3.75% 0.355% 0.75% 2.00% 0.277% 1.00% 2.25% 0.178%
(?l PAN-MAD 3.00% 6.25% 0.531% 3.75% 4.50% 0.483% 1.00% 2.25% 0.178%
S  AMM 2.25% 6.00% 0.447% 1.25% 3.50% 0.392% 1.00% 2.25% 0.176%
< IAMM 2.50% 5.75% 0.449% 1.25% 3.50% 0.374% 1.00% 2.25% 0.179%
p-score (step) 1.00 % 4.50% 0.326% 0.75% 2.00% 0.248% 1.00% 2.00% 0.169%
p-score (linear) 1.00% 6.25% 0.337% 0.75% 3.50% 0.267% 1.25% 2.50% 0.172%
p-score (cont.) 1.00 % 4.50% 0.325% 0.75% 2.00% 0.247 % 1.00% 2.00% 0.168 %
min-max 2.75% 3.75% 0.166% 3.75% 4.25% 0.264% 0.25% 0.25% 0.022%
MAD 12.00% 19.00% 1.518% 12.00% 17.50% 1.516% 0.25% 0.25% 0.022%
TanH 2.25% 2.50% 0.409% 2.50% 3.00% 0.209% 1.00% 2.25% 0.125%

S z-score 2.00% 3.50% 0.145% 2.75% 3.75% 0.220% 0.25% 0.25% 0.022%
—~  PAN-min-max 1.25% 2.75% 0.215% 2.00% 3.50% 0.265% 0.25% 0.25% 0.036%
2 PAN-TanH 1.25% 3.25% 0.071% 1.50% 3.50% 0.188% 0.25% 0.25% 0.022%
(?l PAN-MAD 2.75% 3.75% 0.179% 3.25% 4.25% 0.267% 0.25% 0.25% 0.022%
S AMM 1.00% 3.00% 0.112% 1.75% 3.00% 0.193% 0.25% 0.25% 0.025%
< IAMM 1.00% 3.25% 0.063% 1.50% 3.50% 0.192% 0.25% 0.25% 0.021%
p-score (step) 0.75% 1.75% 0.017 % 0.50% 1.00% 0.102% 0.25% 0.25% 0.021%
p-score (linear) 0.50% 1.50% 0.017% 0.50% 1.25% 0.107% 0.25% 0.25% 0.022%
p-score (cont.) 0.50% 1.75% 0.017 % 0.50% 1.00% 0.096 % 0.25% 0.25% 0.019%

TABLE I: FRR values achieved at fixed FAR, and minHTER values for the different experiment settings on two databases. The best rates
across normalization techniques (columns) are in bold, the second best values also in bold (if the first one occurred less than three times).

Notice the consistency of the proposed p-score performance.

they have a common relation between their values and their
relative induced performance. We evaluated our approach
under a multi-biometric score-level fusion scenario, where
score normalization plays a major role in regulating the influ-
ence of the multiple scores in the final verification decision.
We conducted evaluation on two publicly available databases
and the results showed consistent high performance of our
proposed p-score normalization over baseline and state-of-the-
art solutions, with the FRR at 0.01%FAR reduced on the two
databases by 71% and 81% in comparison to min-max and by
60% and 75% in comparison to z-score under the sum-rule
fusion.
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