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Abstract—In this paper, the problem of legato pedalling
technique detection in polyphonic piano music is addressed.
We propose a novel detection method exploiting the effect of
sympathetic resonance which can be enhanced by a legato-pedal
onset. To measure the effect, a specific piano transcription was
performed using the templates of pre-recorded isolated notes,
from which partial frequencies were estimated. This promotes
the acquisition of residual components associated to the weak co-
excitation of damped notes due to the legato pedalling technique.
Features that represent the sympathetic resonance measure were
extracted from residuals. We finally used a logistic regression
classifier to determine the existence of legato-pedal onsets.

Index Terms—onset detection, sympathetic resonance, piano
acoustics, piano pedalling techniques

I. INTRODUCTION

Automatic music transcription (AMT) focuses on trans-
forming an audio signal into symbolic data using features
that correspond to acoustic and musical properties. Many of
these features however are designed to capture the basic units
of music such as pitch and note onset. Few features are
related to playing techniques, a main component of expressive
performance. Identifying playing techniques has become a
particular new direction in AMT.

In piano music, pedalling techniques subtly colour the
timbre to create different artistic expressions by adjusting
the timing and depth of pedal press and release. Of the
three standard pedals, the most frequently used is the sustain
pedal which prolongs the sound by lifting all dampers off
the strings. Besides sustaining the sounding notes, the sustain
pedal also allows strings associated to other keys to vibrate
due to coupling via the bridge. This phenomenon is known
as sympathetic resonance and is defined in the dictionary of
acoustics as “resonant or near-resonant response of a mechan-
ical or acoustical system excited by energy from an adjoining
system in steady-state vibration” [1]. Pianists embrace the
phenomenon to produce seamless legato through a technique
called legato pedalling [2]. Idealised spectrograms of two
chords played with and without the sustain pedal are presented
in Figure 1 to illustrate the effect of legato pedalling. To
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Fig. 1. Idealised spectrograms of two chords played with and without the
sustain pedal.

prolong the first Cmaj chord, the sustain pedal is pressed while
the fingers are still holding down the keys. When the fingers
are lifted to reach for the Fmaj chord, the Cmaj chord is
sustained because the pedal prevents the dampers from falling
onto the strings. Immediately after the Fmaj chord onset, the
pedal is released to avoid blurring effect caused by the overlap
of the two sonorities. The dampers stop the vibrations in all
strings whose keys are not currently pressed. Then, the pedal
is pressed again to sustain the Fmaj chord, lifting dampers
off the strings. This can slightly co-excite the damped strings
associated to the previous Cmaj chord with the playing Fmaj
chord. A detailed study of such an indirect excitation on piano
tones is introduced in [3]. In this paper, a novel audio-based
method is proposed for the detection of legato pedalling, i.e.,
legato-pedal onset times. Pedalling techniques can be adjusted
by the performer’s sense of tempo, dynamics, textural balance
as well as the settings or milieu in which the performance takes
place [4]. Our legato-pedal onset detection could contribute to
applications of piano pedagogy and the growing field of music
information retrieval.

Existing methods for playing technique detection generally
employ a two-stage framework: feature extraction followed by
a decision-making mechanism. Features are extracted based on
the different characteristics of the techniques. The decision-
making stage can use machine learning methods such as
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Support Vector Machines (SVM) [5]. For instance, a system
for drum playing technique detection in polyphonic mixtures
of music was designed in [6] by using features extracted from
activation functions of a Non-Negative Matrix Factorisation
(NMF) algorithm [7], then classifying those features into
strike, buzz roll, flam and drag using a trained SVM. To
undertake the detection of techniques such as “bend” and
“slide” in guitar playing, low-level spectral features were
extracted and fed into an SVM with sparse coding in [8].
Another approach for detecting playing techniques, commonly
used across different kinds of instruments, is modelling the
observable patterns which span a certain duration in the time-
frequency plot. Frame-wise vibrato detection can be achieved
using the Filter Diagonalisation Method (FDM). A method
proposed in [9] allows frame sizes to be set at values small
enough for identifying local vibrato characteristics.

In the field of piano pedalling techniques, detection methods
in the current literature are all based on isolated notes. The
main features of the sustain-pedal effect outlined in [10] are
the energy of residuals, decay time and amplitude beating. The
values of these features are increased when the sustain pedal
is fully engaged. The energy of residuals was used in [11] to
separate notes played with or without the sustain pedal through
autoregressive modelling of the estimated residuals and then
selecting a threshold to define the two classes. We proposed
audio features based on the analysis of both harmonics and
residuals of recorded piano notes in [12]. In contrast to binary
classification, we trained a decision-tree-based SVM model
to identify isolated notes played with or without pedalling
techniques of different pedal timing and depth.

In our prior work, there are strong assumptions about the
ability to extract clean features from isolated notes that may
not apply in more realistic situations. Despite the importance
of pedalling technique in piano performance, its detection in
polyphonic piano music has not been previously investigated.
In this paper, we propose such an approach to detect legato-
pedal onset using a sympathetic resonance measure which
deals with feature extraction in the presence of overlapping
partials when different notes are sounding. Our method is
designed and evaluated on a novel dataset dedicated for
research on piano pedalling techniques. Modelling the specific
instrument being transcribed can efficiently improve AMT
performance [13]. For this reason, our dataset was built using
a specific piano to employ knowledge about the physics and
acoustics of the instrument. We believe having access to model
parameters of a specific piano is a reasonable assumption for
many performance scenarios.

II. METHOD

The proposed method is motivated by piano acoustics intro-
duced in the previous section. A method of measuring sympa-
thetic resonance is developed using the weak co-excitation of
damped notes, which is due to the legato pedalling technique.
Figure 2 shows a flow chart describing our system. We
first obtain the note transcription through a current state-of-
the-art specific piano transcription method proposed in [14].
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Fig. 2. Framework of legato-pedal onset detection method.

Isolated notes from our dataset are used to form the templates
for the transcription. Their partial frequencies are estimated
using the method proposed in [15]. Sinusoidal components are
determined by the partial frequencies of the notes from their
onset to offset times based on the transcription results. We then
obtain the residuals by subtracting the sinusoidal components
from the original sound. Features are extracted from residuals
using a sympathetic resonance measure, which we consider the
main contribution of this paper. Finally, existence of legato-
pedal onset is determined via a classification mechanism. Each
step is explained in the following subsections. All code used
in our study is made publicly available'.

A. Transcription for Specific Piano

Transcription converts piano audio into a set of note events,
each consisting of pitch, onset and offset times. Piano tran-
scription can be implemented using NMF, which factorises a
spectrogram of a piano recording into 88 spectral bases and
corresponding activations. The sound to be transcribed can be
reconstructed using:

K
Vie =Y WeiHp, @)
k=1
where V' is the reconstructed spectrogram, W is the note
template, and H is the note activation. f € [1,F] is the
frequency bin, ¢ € [1,7] indicates the time frame, and
k € [1,88] is the pitch index. We employed the method
proposed in [14] for specific piano transcription, where the
88 isolated notes played with mezzo-forte dynamics were
pre-recorded using the same piano we wish to transcribe.
Considering the different spectral and temporal characteristics
at the attack and decay phases of a piano note, these two
phases were reconstructed individually. The 88 isolated notes
were used to obtain the attack and decay templates. For
transcription, only the activations were updated. Thereafter
onsets were detected from attack activations by peak-picking,
and offsets were detected by dynamic programming proposed
in [16].

Uhttps://github.com/beiciliang/eusipco2018-legatopedal
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B. Partial Estimation

Due to piano string stiffness, note partials occur at frequen-
cies slightly higher than perfect harmonics. The theoretical
partial frequencies of a note can be computed using Eq.2:

fa=nfov1+ Bn?, (@)

where 7 is the partial index, f,, is the corresponding frequency,
and fj is the fundamental frequency. B is the inharmonicity
coefficient, which varies from note to note [17]. The method
proposed in [15] was applied to the estimation of f, and
B from the 88 pre-recorded notes played with mezzo-forte
dynamics. We set the maximum f,, less than f./3, where f;
is the sampling frequency in Hz. Thereafter partial frequencies
for piano notes were obtained. The influence of dynamics is
beyond the scope of this paper.

C. Sympathetic Resonance Measure Based on Residuals

A well-established spectral modelling of musical sound is
to represent it as two separate components: stable sinusoids
(partials) and noise (residuals) [18]. With pianos, the partial
frequencies are stable so the frequencies can be fixed across
the frames between the note onset and offset [19]. Based on
the results from transcription and partial estimation, sinusoidal
components can be obtained by tracking the amplitude and
phase of the transcribed notes’ partial frequencies from their
detected onsets until offsets. For instance, a note with esti-
mated partials f,, is detected playing from the input signal x
at time ¢, which can be modelled by:

N
2(t) =D An(t) cos(On(t) + r(t), 3)

where A,,(t) and 0, (¢t) are the instantaneous amplitude and
phase of the n-th sinusoid respectively. Then 6,,(t) is taken to
be the integral of the instantaneous frequency f,,. r(t) is the
residual component at time ¢. From Eq. 3, residual components
were thus obtained by subtracting the sinusoidal components
from the original sound.

At this stage, the residual consists of background noise, the
sound of hammer-string strikes from note attacks, piano tones
whose note events were not correctly transcribed and the effect
of sympathetic resonance. As discussed in Section I, when a
legato pedalling is played, the effect of sympathetic resonance
is enhanced by string coupling via the bridge. This transfers
energy from excited string vibrations of a played tone to
unstruck strings of the other tones. In order to detect the energy
change induced by legato pedalling and exclude the influence
of residual components other than sympathetic resonance, only
the energy of unstruck strings was measured. Notes associated
to unstruck strings were determined by the preceding notes that
are beyond the time range between their detected onset and
offset times. They are shown as the horizontal yellow dashed
line in Figure 1 as an example. Their partials were informed
by the estimation results discussed in Section II-B. According
to Parseval’s theorem, energy of these selected partials in the
frequency domain can be used to represent the energy of
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unstruck strings in the time domain in order to detect legato-
pedal onset.

The nature of legato pedalling implies that the pedal onset is
between two note onsets. According to the note onsets detected
in Section II-A, we defined segments, from which legato-pedal
onset was detected. To determine the segments, we fused note
onsets that are within a fixed temporal tolerance window of an
estimated 16th note duration. This is because different onsets
may be detected for the notes played as a single chord, and
it is not possible to change the pedal with every note [20].
Therefore frames between every two successive note onsets
were defined as a segment if the time range they covered
was above the tolerance window. The extent of sympathetic
resonance in each segment was then measured by the root-
mean-square (RMS) energy using Eq.4:

Rus{siml) = 31 @

where S is the residual spectrogram within the current seg-
ment, m is the index of the frequency bins corresponding to
the selected partials, and M is the number of selected partials.
The whole procedure of sympathetic resonance measure based
on residuals is illustrated by Algorithm 1, where P, ON and
OFF refer to the lists of transcribed pitch index, onset and
offset times in seconds. PF’ is the estimated partial frequencies
of the 88 pre-recorded notes. R is the residual spectrogram.

Algorithm 1 Sympathetic resonance measure

Require: 6: estimated duration of a 16th note in seconds; «, (:
frame and frequency resolution of the spectrogram
procedure MEASURE(P, ON, OFF, PF, R)

I J+0:len(R)—1,0:len(P)—1
SRM < zeros(I)
for all k€ J[0: —1] do
if ON[k + 1] — ON[k] > 6 then
t < ONIk]
SFreq <— empty list
for all j € J do
if ON[j] < t < OFF[j] then
SFreq < append(SFreq, PF[P[j]])
frmS, frmE < ON[k]/a, ON[k + 1]/«
freqBin < SFreq/f3
SRM[frmS : frmE] <+ RM S{R|freqBin]}
return SRM

D. Feature Extraction

Our intuitive observation relates the changes in the value
of RMS energy to pedalling onsets. An energy peak appears
when sympathetic resonance is enhanced by the legato-pedal
onset. Maximum RMS energy was extracted as a feature
per segment and recorded on both linear and decibel scale
(denoted as Maxyneqr and Maxyp respectively). Because
legato pedalling follows a note attack, the peak location with
respect to the number of frames away from the note onset,
i.e., starting point of the segment, was extracted from every
segment (denoted as Peakj,.). A new 2-dimensional feature
was designed by combining Peak;,. with either Maz;pear
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or Maxz,p, depending on which is more representative of the
maximum RMS energy. This was assessed through the evalu-
ation presented in Section III. This aims at detecting legato-
pedal onset with a higher accuracy. Finally, the existence of
legato-pedal onset in each segment was determined via logistic
regression as a binary outcome.

ITI. EXPERIMENTS
A. Dataset

Most public annotated piano datasets are either for research
on multi-pitch estimation [21] or lack isolated-note recordings
from the same piano [22]. We therefore built our own dataset
for piano pedalling techniques detection. MIDI files of four
classical pieces by different composers were selected from
the SMD dataset [22]. These pieces were performed by
professional pianists on a Yamaha Disklavier which allows
key and pedal movements to be captured and stored as MIDI
files. They were rendered into audio using a reproducing piano.
This yielded an audio dataset with fully-automatic and reliable
annotation. The recording was carried out at the Yamaha
recording studio in Milton Keynes, United Kingdom, in March
2017. The instrument was a Yamaha Disklavier grand piano
which was tuned directly prior to the recording session. The
audio of the four pieces and isolated notes were recorded using
the spaced-pair stereo microphone technique using Earthworks
QTC40 omnidirectional condenser microphones positioned
about 50 cm above the strings. The positions were kept
constant during the recording. The signals were recorded with
a sampling rate of 44.1 kHz and a resolution of 24 bits.

Each audio signal was segmented as discussed in Sec-
tion II-C based on note onsets from the transcription. The
pedal movement from MIDI-annotation is represented using
integers (0-127). To annotate each segment and designate
the existence of legato-pedal onset, we first quantised pedal
movement and represented it using a binary state variable.
Values below 64 are considered the “off” state, while values
above are considered “on”. Each segment was then labelled
“1” to denote the presence of legato-pedal onset, when the
pedal state within the segment had transitioned from off to
on, otherwise segments were labelled “0”. Table I lists the
number of segments annotated using 0 or 1 in each piece
representing our ground truth data. The current dataset is
limited in the number of music pieces, however there are
almost 3000 segments in total to be classified.

The input signals were divided into frames of 2048-sample
Hann window (hop size = 512) to compute the spectrogram.
To further minimize the influence of percussive components
from the residuals, based on which the sympathetic resonance
was measured in Section II-C, harmonic percussive source
separation using a median-filtering technique [23] was applied
to the original spectrogram as a pre-processing step. Residuals
were obtained by removing the sinusoids from the harmonic
components.

B. Evaluation

Our goal is to evaluate the efficiency of the proposed signal
processing method and features representing a measure of
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TABLE I
THE NUMBER OF LABELS AND SEGMENTS IN EACH PIECE.
Piece #Label 0 #Label 1 #Segments
Beethoven Op.31 No.2-3 1113 84 1197
Chopin Op.10 No.3 438 108 546

Brahms Op.10 No.1 161 110 271

Ravel Jeux d’eau 710 88 798
Total Number 2422 390 2812
TABLE 11
EXPERIMENT RESULTS OF EACH PIECE.

Piece Py Ry Fy Fricro
Beethoven Op.31 No.2-3 0.13 0.38 0.20 0.80
Chopin Op.10 No.3 0.69 0.69 0.69 0.88
Brahms Op.10 No.1 0.56 0.58 0.57 0.62
Ravel Jeux d’eau 0.23 0.87 0.36 0.71

sympathetic resonance, instead of classifier selection. Logistic
regression was chosen as a binary classifier because the model
should discriminate the presence or absence of sympathetic
resonance in note segments.

As we introduced in Section II-D, Max;peqr and Mazyp
in every segment were extracted as features. To determine
which one represents the segments better, we evaluated logistic
regression models with the two features separately, using the
Akaike information criterion (AIC) [24]. A logistic regression
model with the more representative feature should yield a
smaller AIC value. Max,p was selected because it returns a
smaller AIC value of 2507.39 than 2555.36 by M azinecqr- We
also evaluated the logistic regression model with 2-dimension
features consisting of Maxyp and Peak;,.. This was chosen
as the final model because it gives the smallest AIC value of
2361.35.

To evaluate the model, data in each piece was separated into
two halves, one for training and the other one for testing. This
piece-level evaluation was selected because the overall tempo
and dynamics in a piece effect the attributes of the trained
model. Moreover, models were trained with weighted classes
in the Beethoven and Ravel pieces, which exhibit unbalanced
data containing less than 100 segments with legato-pedal
onset. Given the test results for every piece, we then calculated
precision (P;), recall (R;) and F-measure (F}) with respect to
label “1”. In addition, we show the overall performance using
micro-averaged F-measure (F)yicro). We used the scikit-learn®
library to construct the model and compute the performance
metrics.

C. Results and Discussion

Table II presents the model performances for each piece.
The overall results indicate that our method extracts relevant
features to represent the effect of sympathetic resonance and
helps to detect legato-pedal onsets from audio. In terms of
performance metric for label 1 (indicating legato-pedal onset
in a segment), results of the Chopin piece achieve the best P;
and F}, while those of the Beethoven piece are the worst.

Zhttp://scikit-learn.org
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We assume this is partially due to the different nature of
their music. Our method works better on the pieces where
legato pedalling is an essential ingredient to create contrast
between pedalled and unpedalled notes through the effect of
sympathetic resonance. If this effect is also correlated with
other musical attributes, our features are less representative
as an indicator of legato-pedal onset which leads to poor
classification performance. This adverse effect can be observed
particularly in terms of precision due to the increased number
of false positives.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a method for detecting legato-pedal
onsets of the piano based on a measure of sympathetic
resonance. The energy of unstruck strings can represent the
extent of sympathetic resonance which changes with the legato
pedalling technique. In our method, residual note segments
were obtained using piano transcription and partial estimation.
Based on the energy in each segment, maximum value in
decibel scale and peak location were extracted as features. The
existence of legato-pedal onset per segment was determined
using a logistic regression classifier trained on the features.
The overall performance shows that this technique can be
used as an indicator of legato pedalling. Our method, although
still preliminary, is the first to detect pedalling technique in
polyphonic piano music.

Our evaluation results are well grounded in musicology
and may be explained by differences in pedal use between
composers and musical eras. It is well acknowledged that
Chopin took particular care of pedal notations. This could
yield cleaner features and consequently the best results for the
Chopin piece. If the piece itself has cross rhythms and dense
harmonic structure, which Brahms’ music is firmly rooted in,
the extent of sympathetic resonance may not be significantly
changed by legato-pedal onset. In this case, our features
are less discriminative. Similarly, other playing techniques
that are correlated with the effect of sympathetic resonance
may degrade classification performance. This is observed in
the Ravel piece, which puts emphasis on timbral nuances,
expanding the keyboard and pedalling techniques more than
the use of legato pedalling. Finally the results in the Beethoven
piece can also be explained by highly unbalanced training
data, due to the fact that legato pedalling was rarely used in
Beethoven’s time.

Our method used piano transcription technique as an in-
termediate step for the residual acquisition and segmentation.
Future work will investigate how to reduce the effects of note
transcription errors on the sympathetic resonance measure.
In addition, the current logistic regression model learned a
fixed threshold for each piece to perform classification. We
will assess adaptive thresholding techniques on the calculated
residual energy. This could facilitate more accurate estimation
of pedal onset times without a training process.
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