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Abstract—In this paper we introduce an approach for action
recognition in motion capture data. The data are represented
by the joints positions of the skeleton in each frame (posture
vectors) and the differences of these positions over time, in
different temporal scales. The Vector of Locally Aggregated
Descriptors (VLAD) framework is used to encode the extracted
features whereas a Support Vector Machine (SVM) is used for
classification. A voting scheme is used in the VLAD framework
to achieve soft encoding. The effectiveness and robustness of the
proposed approach is shown in experiments performed on three
datasets (MSRAction3D, MSRActionPairs and HDM05).

I. INTRODUCTION

Motion capture (skeleton animation) data have been lately

used quite often in computer vision and video analysis and

understanding research especially since the release of the

Microsoft Kinect RGBD device in 2010 [1]. Kinect is able

to record depth video data and can also provide, through

algorithms included in the software that accompanies the

sensor, information for the joints positions of tracked skele-

tons, transforming motion capture (mocap), a rather expensive

technique until then, to a common and affordable operation.

Markerless motion capture is a big advantage, besides the

pricing, of RGBD devices such as the Kinect sensor. There

is no need for sensors to be attached to a person’s body in

order to capture skeleton motion, thus the creation of datasets

and their corresponding analysis is a much easier task with

Kinect-like devices.

An important research topic related to motion capture data

acquired from depth cameras or through other means is

action recognition. Action recognition deals with the process

of labeling a motion sequence with respect to the depicted

motions. Technically, an action is a sequence generated by a

human subject during the performance of a task. Action recog-

nition has numerous applications including human computer

interaction, video surveillance, multimedia annotation etc.

This paper presents an action recognition method that

operates on features derived from skeletal data. Posture vectors

containing the 3D position of skeletal joints and their forward

differences in different temporal scales are extracted from

motion capture data as in [2]. Vector of Locally Aggregated

Descriptors (VLAD) [3] is used as a framework for encoding

the features of each sequence. The proposed approach was

tested in three action datasets. A flowchart of the approach is

shown in Fig. 1.

The remaining of this paper is organized as follows. In

Section II, we present a review of previous work on this topic.

In Section III, the proposed method is described in detail.

Experimental performance evaluation of the proposed method

and comparison with other approaches is presented in Section

IV. Conclusions follow in Section V.

II. PREVIOUS WORK

Action recognition from video data has been a very ac-

tive research field the last decades. Surveys and reviews of

action recognition methods on such data can be found in

[4], [5] and [6]. A review of public datasets used for the

experimental evaluation of such methods can be found in [7].

However, motion capture technology became widely available

only during the last years. Hence the body of research for

movement recognition on mocap data is not as extensive as

for video data. A review of spacetime representations of 3D

skeletal data for movement recognition or related tasks is

presented in [8]. The use of the most informative joints in

order to represent skeletal sequences for action recognition

was proposed by Ofli et al. in [9]. A sequence is segmented

either by using a fixed number of segments or by using

a fixed temporal window. Then the proposed features (the

most informative joints) are computed in these segments and

used to represent the sequence. Nearest neighbour and SVM

are used for classification. Han et al. used a hierarchical

discriminative approach in [10] for human action recognition.

The human motion is represented in a hierarchical manifold

space learned by the use of Hierarchical Gaussian Process

Latent Variable Model (HGPLVM). Conditional random fields

are used to extract mutual invariant features from each man-

ifold subscpace, and the classification is performed by an

SVM classifier. Amor et al. in [11] represent the skeletons

as trajectories on Kendall’s shape manifold. In order to make

these representations suitable for statistical analysis, they use

a combination of the transported square-root invariant vector

fields (TSRVFs) of trajectories and the standard Euclidean

norm. The authors used these representations for smoothing

and denoising skeleton trajectories using median filtering, up

and down sampling in time domain, simultaneous temporal
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Fig. 1. A flowchart of the proposed approach.

registration of multiple actions and for extracting invertible

Euclidean representations of actions. The latter were used to

address the action recognition task with SVM classification.

A new set of features (local occupancy patterns) and a new

temporal patterns representation (Fourier Temporal Pyramid)

was proposed in [12] in order to represent 3D joint positions.

They define the so-called actionlets, each being a certain

conjunction of the features for a joints subset. A sequence is

represented as a linear combination of actionlets. SVM is used

for classification. The covariance matrix for skeleton joints

locations over time is used as a descriptor by Hussein et al.

in [13] to address the action recognition problem. The authors

compute the covariance matrix over time. To use the temporal

dependency of joint locations, multiple covariance matrices

are computed in a hierarchical fashion. Linear SVM is used

for classification. Gowayyed et al. in [14] proposed a new

descriptor to represent the 3D trajectories of body joints and

perform action recognition. The descriptor is a histogram of

oriented displacements in 2D space. Each displacement in the

trajectory votes with its length in a histogram of orientation

angles. The authors compute the descriptor for each joint in

xy, xz and yz projections and then concatenate the histograms.

In order to take into account the temporal information, they

use the temporal pyramid approach to construct the final vector

that represents the human action. Vemulapalli and Chellappa in

[15] use 3D rotations between various body parts to represent

each skeleton. In more detail, to obtain a scale-invariant

representation, the authors use only the rotations to describe

the relative 3D geometry between parts. The authors used

a representation similar to that in [16] to model the human

actions as curves in a Lie group. In order to classify the

modelled actions, the authors unwrap the action curves onto

the Lie algebra by combining the logarithm map with rolling

maps (that describe how a manifold rolls over another, without

slip and twist, along a smooth rolling curve). The mapped

curves are classified using SVM.

III. METHOD DESCRIPTION

A. Feature extraction

In the proposed approach, skeletal data are represented by

two types of features: the posture vectors and the forward

differences vectors in a way similar to the approach used

in [2]. However, the method proposed in [2] was unable

to distinguish between similar motions that have different

directions (e.g. stand up and sit down), because of the way the

forward differences were calculated. The forward differences

are computed in this paper in a slightly different manner

(Eq. 2) so as to encode directional information of the human

motion.

Skeletal data can be represented as a sequence of posture

vectors qi, i = 1, . . . , N where N is the number of frames

of the sequence. Each such vector carries information for the

positions of the skeleton joints in the 3D space.

qi = [xi1, yi1, zi1, xi2, yi2, zi2, . . . , xil, yil, zil] (1)

where l is the number of joints that form the posture vector.

Motion capture sequences are also represented by vectors of

forward differences evaluated over joint positions. Forward

differences estimate the first derivative of a signal and thus,

when applied on joint positions, carry information for the

average velocities of the skeleton joints. More specifically,

forward differences in terms of skeletal animation data can

be defined as:

υ
t
i = ∆t[q] = qi+t − qi (2)

where qi,qi+t are the posture vectors in frames i and i + t
respectively, υt

i can be considered as a vector of the average

velocities of the joints of a skeleton in frame i. In the proposed

approach, the forward differences of the joints are computed

in different temporal scales and more specifically for t = 1,

t = 5 and t = 10 in order to capture the dynamics of the

joints of a skeleton.

Summarizing, two types of features, forming 4 groups of

vectors are used to represent a skeletal sequence: posture

vectors and forward differences vectors in three different

temporal scales. Thus each sequence is represented by four

sets of feature vectors: T1,T2,T3,T4:

T1 = {q1, . . . ,qN}

T2 = {υ1
1, . . . ,υ

1
N−1}

T3 = {υ5
1, . . . ,υ

5
N−5}

T4 = {υ10
1 , . . . ,υ10

N−10}

(3)
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B. Feature Vector encoding - Vector of Locally Aggregated

Descriptors Framework

The features are encoded using the Vectors of Locally

Aggregated Descriptors (VLAD) framework [3].

First, feature vectors are clustered in each feature space

by using the K-means algorithm. In VLAD encoding the

differences of the feature vectors from cluster centers are used

to form vectors that represent the sequences.

In more detail, let Tkj where k = 1 . . . 4 be the sets of

features that have been extracted from sequence j, in the 4
different feature spaces. K-means was applied separately for

each feature type, resulting to 4 ∗ C centroids, where C the

number of clusters in each feature space. Next, each feature

vector is mapped to the cluster centers. A voting scheme

is used to encode the skeletal features. In more detail, the

similarities of each feature vector (belonging to one of the

four feature spaces) of the j-th sequence with each cluster

center of this feature space are computed.

s
j

k
= sim(ck , t

j) = exp(−(

∑l

i=1
(‖ cki − t

j

i
‖2)

0.5 ∗max
k

(
∑l

i=1
(‖ cki − t

j

i
‖2))

)2) (4)

where sjk is the similarity between cluster center ck and a

feature vector tj of the j-th sequence. Then a vector of ordered

similarities: S = [sj(1), . . . , s
j

(C)], where C is the number

of clusters is formed for each feature vector of sequence j.

Let bij be the C-dimensional voting vector that encodes the

association of the i-th feature vector of the j-th sequence with

each cluster center. In the voting scheme, an element of bij

is the similarity of the i-th feature with a cluster center if the

corresponding cluster center is in the R most similar centers

(as in [2]) of this feature vector or 0 otherwise, where R is is

found as the value that satisfies the following inequalities:

∑R−1
k=1 sj(k)

∑C

k=1 s
j

(k)

< 0.05 <

∑R

k=1 s
j

(k)
∑C

k=1 s
j

(k)

(5)

In the special case where sj(1) > 0.05
∑C

k=1 s
j

(k), R is set to

1. In the next step, vectors v′

z are formed as follows:

v′j

z =
M
∑

i=1

bijz

(

t
j
i − cz

)

, z = 1, . . . , C (6)

where M is the number of features extracted from the j-th

sequence, bijz is an element of the bij vector and represents

the association of i feature with z cluster center, t
j
i the i-th

feature vector in a certain feature space and cz the z cluster

center. Dimensionality of v′j
z is the same as that of the feature

vectors. Then, square root normalization is applied to each v′
j
zq

element of v′j
z to obtain v′′j

z:

v′′
j

zq = sgn(v′
j

zq)
√

|v′jzq|, q = 1, . . . , O (7)

where O the dimensionality of the feature vector. Subse-

quently, v′′j
z = [v′′

j
z1, v

′′j
z2, . . . , v

′′j
zO] is normalized using

l2 normalization, vj
z = v′′j

z/‖v
′′j
z‖2. The resulting vj

z (z =

1 . . . C) vectors are concatenated to form a vector V′

j of

L = O×C dimensionality that characterizes the j-th sequence:

V′

j =











v
j
1

v
j
2
...

v
j
C











(8)

The final vector V′

j is also l2 normalized to obtain Vj :

Vj =
V′

j

‖V′
j‖2

(9)

This procedure is repeated for each feature type, and finally,

each sequence is represented by 4 vectors, namely V
p
j for

posture vectors, Vυ1

j for forward differences when t = 1,

Vυ5

j for forward differences when t = 5 and Vυ10

j for forward

differences when t = 10.

C. Classification

An SVM with RBF kernels is used for classification. Since 4
vectors have been formed to represent each sequence, 4 kernels

are computed, one for each feature type. The kernels are fused

by computing the mean kernel:

Kf = (Kpos +Kυ1 +Kυ5 +Kυ10)/4 (10)

where Kpos,Kυ1 ,Kυ5 and Kυ10 are the kernels formed from

the posture vectors and the forward differences for t = 1, t = 5
and t = 10 respectively.

IV. EXPERIMENTAL RESULTS

The proposed method has been tested on three datasets,

namely MSR Action3D (MSR) [17], MSR Action Pairs (MSR-

Pairs) [18], and HDM05 [19]. SVM classifier was trained

with values of the soft margin parameter in the range

2−20, 2−19, . . . , 219, 220. The parameter value with the highest

results was computed for each dataset and the best results

are presented. It should also be noted that concatenation of

the feature vectors and usage of a single kernel matrix was

investigated for fusing the information from the 4 feature types

but the achieved results were lower than those obtained by

using the mean of 4 kernels, as described in III-C.

The MSR3D dataset consists of 10 subject performing 20
actions with 2 or 3 repetitions of each action. The actions

performed in the MSR dataset are high arm wave (High-

ArmW), horizontal arm wave (HorizArmW), hammer (Ham-

mer), hand catch (HandCatch), forward punch (FPunch), high

throw (HighThrow), draw x (DrawX), draw tick (DrawTick),

draw circle (DrawCircle), hand clap (Clap), two hand wave

(TwoHandW), side-boxing (Sidebox), Bend (Bend), forward

kick (FKick), side kick (SKick), jogging (Jog), tennis swing

(TSwing), Golf (Golf), pickup & throw (PickT) and tennis

serve (TServe). Odd subjects (1,3,5,7) were used for training

and even subjects (2,4,6,8) were used for testing. It should

be noted that PCA was applied to the positions of the joints

to decorrelate the data. The results of the proposed method

alongside with four methods that use the same experimental
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setup are shown in Table I. The proposed approach achieved

very good results outperforming three methods and matching

the results of the method proposed in [14].

TABLE I
CORRECT CLASSIFICATION RATE IN THE EXPERIMENTAL SETUP

PROPOSED IN [17] ON THE MSR ACTION3D DATASET.

Classification Rate

Proposed 91.27
Amor et al. [11] 89
Wang et al. [12] 88.2

Hussein et al. [13] 90.53
Gowayyed et al. [14] 91.26

The MSRPairs dataset was proposed in [18]. The main

characteristic of this dataset is that is consists of pairs of

actions. These action pairs have similar motion and shape cues

but their correlations vary. In more detail, 6 pairs of actions

exist in this dataset, namely Pick up a box/Put down a box,

Lift a box/Place a box, Push a chair/Pull a chair, Wear a

hat/Take off a hat, Put on a backpack/Take of a backpack,

Stick a poster/Remove a poster. Ten subjects perform each

action three times. Sequences of half of the subjects were used

for training and the rest for testing. PCA was performed to

the skeletal data as in MSR3D dataset. The classification rate

achieved by the proposed method and by 2 other methods can

be seen in Table II. The proposed method outpreformed both

methods.

TABLE II
CORRECT CLASSIFICATION RATE IN THE EXPERIMENTAL SETUP

PROPOSED IN [18] ON THE MSRPAIRS DATASET.

Rate

Proposed 95.51

Vemulapalli and Chellappa [15] 94.09
Amor et al. [11] 93

The HDM05 database [20] consists of various movements

performed by five subjects in the form of Amc files. The subset

of this dataset that was used to assess the proposed method was

proposed by Ofli et al. in [9] and includes 16 actions namely

deposit floor (DepositFloor), elbow to knee (ElbowKnee), grab

high (GrabHigh), hop both legs (HopBoth), jog (Jog), kick

forwards (KickFor), lie down floor (LieFloor), rotate both

arms backward (RotateBArmsB), sneak (Sneak), squat (Squat),

throw basketball (ThrowBasket), jump (Jump), jumping jacks

(JumpJacks), throw (Throw), sit down (SitDown) and stand

up (StandUp). The experimental setup proposed in [9] was

used. In more detail the sequences of 3 subjects were used

to form the training set (216 sequences) and the sequences

from the other 2 subjects were used to form the test set (177
action sequences). The experimental setup proposed in [9] was

used. The correct classification rate for the proposed method

was 93.22%. This is 1.69% better than the result (91.53%)

obtained on the same dataset by the method in [9].

K-means algorithm is used in VLAD framework for the

evaluation of the codewords that will be used for the repre-

sentation. An obvious question is how the number of clusters

(C) affects the performance of the proposed framework. Clas-

sification rates for various values of C for the MSR3D dataset

50 100 150 200 250 300 350 400 450 500

0.894

0.896

0.898

0.9

0.902

0.904

0.906

0.908

0.91

0.912

0.914

Fig. 2. Classification rates for various numbers of cluster centers (MSR3D
dataset).

and for the first experimental setup can be seen in Figure 2.

As can be seen in this figure, C has not strong impact to the

classification rates achieved by the proposed method.

Another important characteristic of a classification method

is the time needed for a sequence to be classified. The

classification time for an unknown sequence of length 60

frames (2 seconds) can be seen in Table III. The framework

that was used for classification was trained with 200 cluster

centers (the parameters that achieved the best classification

rate were used). The experiment ran on a PC with a quad-

core processor and 8 GB of RAM and the computations were

made using unoptimized MatLab code under Windows.

TABLE III
COMPUTATIONAL TIME (IN SECONDS) OF THE PROPOSED METHOD.

Method Component Time (sec)

Feature Extraction 0.014
Feature Encoding 0.144

Classification 1.927

Overall 2.084

As can be seen in this Table, a sequence of 2 seconds

duration was classified in 2.08 seconds, hence the proposed

method can be used in real time classification scenarios,

considering a time window for continuous classification.

A critical parameter for the computational complexity of

the proposed method is the number of clusters C (Figure 3).

C affects the classification and feature encoding steps, but,

obviously, not the feature extraction step. The classification

step execution time for various values of C is shown in Figure

3 since, as can be seen in Table III, it is more time consuming

than feature encoding. As can be seen in this Figure, the time

needed for classification for the proposed method is almost

linear to the number of clusters. However, according to Figure

2, good classification results can be achieved even with a

small C. Hence, with a small sacrifice in classification rate,
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Fig. 3. Computational time (in seconds) for the classification step of the
proposed method for different numbers of clusters.

the overall classification time can be kept fairly low.

V. CONCLUSION

In this paper, an approach for action recognition was

proposed. Four types of features are extracted and VLAD

framework is used to encode these features. A voting scheme

is used for the encoding of the features. SVM is used for

classification and the features are fused using kernel addition.

Experiments showed that that the used features alongside with

the VLAD framework achieve high classification results in

three different datasets. In the future, extension towards motion

clustering, segmentation and indexing will also be considered.
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