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José Picheral

Elisabeth Lahalle

Laboratoire des Signaux et Systèmes
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Abstract—Blades vibrations must be measured in operations
to validate blade design. Tip-timing is one of the classical
measurement methods but its main drawback is the generation
of sub-sampled and non-uniform sampled signals. This paper
presents a new sparse method for tip-timing spectral analysis
that makes use of engine rotation variations. Assuming that
blade vibration signals yield to line spectra, a sparse signal
model is introduced as a linear system. The solution to the
problem is obtained by ADMM (Alternating Direction Method
of Multipliers) with a ℓ

1-regularization. Results for simulated
and real signals are given to illustrate the efficiency of this
method. The main advantages of the proposed method are to
provide a fast solution and to take into account the variations
of the rotation speed. Results show that this approach reduces
frequency aliasings caused by the low sampling frequency of the
measured signals.

I. INTRODUCTION

Compressors and turbines blades vibrations are a key el-

ement in the turbomachinery test certification campaign. In-

deed, in operating conditions, blades are excited by alternating

aerodynamic turbulences that may cause mechanical reso-

nances. Compressors and turbines test aim at identifying and

quantifying blade mechanical responses under such excitation

sources. Blades vibrations are traditionally measured by strain

gauges. However, due to the high implementation cost and

complexity, only a few blades are generally instrumented.

Besides, sticking a gauge and its wire on a blade slightly

modifies its mechanical response. All these gauges drawbacks

made popular an other measurement method, less intrusive and

easier to set up, called tip-timing. The acquisition system is

composed by a set of C optical probes mounted on the stator

and monitoring the blade tip passing times, see Fig.1. When

a blade is passing in front of the laser beam, the optical probe

detects the blade and records the corresponding time. This

time can vary if the blade is vibrating and the delay can be

interpreted as a blade tip displacement, knowing the rotation

frequency. As shown Fig.1, the sampling times, indicated by

the sampling function e(t), are irregular because probes are

non-equidistant on the stator. Moreover, the irregular sampling

pattern is repeated at each revolution, then this time sampling

pattern is irregular and periodic. Thus, the frequency sampling
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Fig. 1. Blade vibration measurement with tip-timing technology.

pattern consists of peaks located at every multiple of the rota-

tion frequency. Most often, the spectral frequency components

are largely higher than the rotation frequency. Consequently,

signals are sub-sampled and the spectrum contains aliased

components generated by the periodic sampling patterns.

For the last 30 years, several solutions have been developed

to face these difficulties [1]–[3]. But with those methods, the

multi-components spectral analysis remains delicate. Further-

more, most of them lie on strong hypotheses about blade me-

chanical behavior, which are not necessarily confirmed in real

functioning. Recently, new approaches that do not require such

hypotheses have been proposed. Minimum Variance Spectral

Estimator (MVSE) [4], is an iterative method to estimate

the covariance matrix for Capon method [5] in the case of

tip-timing signals. Nevertheless, this method involves a high

computation time. A compressed sensing approach has been

developed in [6] based on a Sparse Reconstruction Method

(denoted as SRM in this paper). An other ℓ1-regularized

method, developped in [7] by the authors, has been proposed

for spectral analysis of tip-timing signals. Note that, inherent

hypothesis of [6] and [7] methods do not allow engine speed

variations. Consequently, on real data, the rotation speed

variations limit the length of the observation window and

can lead to erroneous amplitudes estimations. To this day, to

our knowledge, no method using engine speed variations has

been developed for tip-timing analysis. Therefore, this paper
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presents a new fast sparse method that makes use of the engine

rotation variations to eliminate artefacts in tip timing spectral

analysis. The use of sparsity in the method is justified with

the a priori knowledge that blades present a limited number

of vibrations modes on the engine range of use. Thus, the

vibration signal spectrum consists of a very limited number of

frequency lines. As far as line spectra of non uniform sampled

signals are concerned, they have already been studied with

sparse methods (see [8], for instance). Nonetheless, in the

context of tip-timing signals, the issue is slightly different

since the sampling pattern, see Fig. 1, leads to numerous

aliasings artifacts in the signal spectrum on the considered

frequency range.

This paper is organized as follow: section II introduces the

tip-timing signal model and the proposed estimator. Section III

exposes the experimental results and performances in terms of

mean squared error (MSE), spectrum sparsity and computation

time. Finally, section IV concludes the paper and discusses

future studies.

II. SPARSE MODELS OF TIP-TIMING SIGNAL

Assuming that the vibration signal of a unique blade is

x(t), the measured signal y(t) is extracted from a set of C
probes by revolution over Nt revolutions, with non stationary

rotation frequency Fr(n) = 1/Tr(n), where 1 ≤ n ≤ Nt

is the revolution number. The model of the time continuous

sampled signal over N points is:

y(t) =

N
∑

k=1

x(tk)δ(t− tk). (1)

Besides, probes are placed around the stator at arbitrary

angular positions θc, 1 ≤ c ≤ C. Sampling pattern is then

irregular. For a given revolution n, the sampling times are:

tk = θcTr(n)/2π +

n−1
∑

i=1

Tr(i) (2)

with k = c+ C(n− 1).
Vibrations are supposed to be sinusoidal and frequency-

bounded on [0, fmax]. The signal x(t) is then approximated

by ξ(t) such as x(t) = ξ(t) + b(t), where b(t) includes the

model error and the noise measurement. The model ξ(t) can be

written as a sum of M cosines whose frequency components

are fm = m
M fmax of respective amplitudes αm and phases

ϕm:

ξ(t) =

M
∑

m=1

αmcos(2πfmt+ ϕm), (3a)

and its Fourier transform is given by:

ξ̃(f) =
1

2

M
∑

m=1

αmejϕmδ(f − fm)

+αme−jϕmδ(f + fm). (3b)

Blades are only vibrating on a limited number of modes,

hence, most of the amplitudes αm are zero. This particular

sparsity property about the αm will be exploited further. The

signal model presented in this section leads to two sampling

models: the model of irregular periodic sampling (abbreviated

as MIPS) which uses the Fr periodicity and the presented

model of absolute sampling (abbreviated as MASS) when Fr

is not constant.

A. Model of Irregular Periodic Sampling: MIPS

The model of irregular periodic sampling has been devel-

oped in [7] and some concepts are recalled here. Assuming the

rotating frequency is not varying during runs, the sampling is

periodic of period Tr = Tr(n), ∀1 ≤ n ≤ Nt. Thus, the

sampled vibration signal can be written as:

y(t) = x(t)e(t), (4)

with e(t) the sampling function. This function can be written

as the convolution between a Dirac comb of period Tr, noted

XTr
(t), and a tip-timing sampling pattern eTT (t) linked to

the irregular probe distribution:

e(t) = eTT (t) ∗XTr
(t)

=

C
∑

c=1

δ(t− θcTr/2π) ∗

+∞
∑

n=−∞

δ(t− nTr). (5)

A spectral estimation of x(t) is given by the Non Uniform

Fourier Transform (NUFT) ỹ(f) =
∑N

k=1 x(tk)e
−j2πftk of

y(t) and can be modeled by:

ζ̃(f) = Fr

+∞
∑

n=0

(ξ̃ ∗ Π̃[0,NtTr ])(f − nFr)ẽTT (nFr). (6)

This spectrum is the convolution of ξ̃(f) with the observation

window spectrum Π̃(f) and replicated on the multiples of the

rotation frequency. Unlike the regular case, each refolding is

weighted by ẽTT (nFr), related to the probes positions. With

(3b) and an even number of revolutions, (6) can be rewritten

as:

ζ̃(f) =

M
∑

m=1

amg+m(f) + a∗mg−m(f) (7)

where

g±m(f) =
Nt

2
e−j2πf

Nt
Fr

∞
∑

n=0

ẽTT (nFr)

× sinc

(

Nt

Fr
(f ± fm − nFr)

)

e−jπ(±fm)
Nt
Fr ,

am = αmejϕm

and a∗m the complex conjugate of am. By splitting the quan-

tities into real and imaginary parts, respectively marked with

the exponent R and I , (7) becomes:

ζ̃R(f) =

M
∑

m=1

aRm(g+R
m + g−R

m )(f) + aIm(−g+I
m + g−I

m )(f)

ζ̃I(f) =

M
∑

m=1

aRm(g+I
m + g−I

m )(f) + aIm(g+R
m − g−R

m )(f).
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With the interval I discretised into (fk), 1 ≤ k ≤ Nf values,

(7) can then be written as a linear system:

ζ̃ = Gθ (8)

=

[

G1 G2

G3 G4

]

θ

where

ζ̃ = [ζ̃R(f1) ... ζ̃
R(fNf

) ζ̃I(f1) ... ζ̃
I(fNf

)]T ,

of size [2Nf×1],

G1 = [(g+R
M + g−R

M )(fk) ... (g
+R
1 + g−R

1 )(fk)],

G2 = [(−g+I
1 + g−I

1 )(fk) ... (−g+I
M + g−I

M )(fk)],

G3 = [(g+I
M + g−I

M )(fk) ... (g
+I
1 + g−I

1 )(fk)],

G4 = [(g+R
1 − g−R

1 )(fk) ... (g
+R
M − g−R

M )(fk)]

of sizes [ Nf ×M ],

θ = [aRM ... aR1 aI1 ... aIM ]T of size [2M × 1],

and [.]T is the transposition operator. Since {fm}m=1,...,M

are usually choosen to sample uniformly the frequency range

of interest, θ provides an estimation of the amplitudes am
of each fm and thus a spectral representation of the signal.

In the case of line spectrum and from the (3b) comment,

most of the am are null so that θ is sparse. This motivate

us to introduce sparsity prior in the regularization term. In

order to solve (8) with sparse a priori, a ℓ1-norm penalisation

has been introduced on θ, with a regularisation parameter λ.

Consequently, a LASSO [9] problem is obtained:

J(θ) = min
θ

||ỹ −Gθ||22 + λ||θ||1. (9)

with ỹ = [ỹR(f1) ... ỹR(fNf
) ỹI(f1) ... ỹI(fNf

)]T of size

[2Nf×1]. Criterion (9) is solved with the Alternating Direction

Method of Multipliers (ADMM) [10] algorithm.

B. Proposed model : Model of AbSolute Sampling, MASS

The MIPS previously mentioned is no longer accurate

in the case of non stationary rotation frequency. Thus, in

this paper we propose a generalized model called Model of

AbSolute Sampling (MASS), that takes into account the real

rotation frequency fluctuations. On the considered observation

windows, the frequencies fm are supposed asynchronous and

are neither rotation frequency nor time dependent. With (1)

and (3a), the sampled vibration signal is rewritten as follows:

y(t) =
M
∑

m=1

aRm

N
∑

k=1

cos(2πfmt)δ(t− tk)

−

M
∑

m=1

aIm

N
∑

k=1

sin(2πfmt)δ(t− tk) + b(t). (10)

Similarly to (8), a linear system is obtained:

y = Eθ + b (11)

where

y = [y(t1) y(t2) ... y(tN )]T of size [N × 1],

b = [b(t1) b(t2) ... b(tN )]T of size [N × 1],

E = [Ec Es],

where Ec
n,m = cos(2πfM−m+1tn) and Es

n,m =
−sin(2πfmtn), Ec and Es are both of sizes N ×M and θ

remains the same as in (8). To solve (11), a LASSO problem

is obtained:

P (θ) = min
θ

||y −Eθ||22 + λ||θ||1. (12)

Criterion (12) is also solved with the ADMM [10] algorithm.

The MASS model is more generic than the MIPS one. In

consequence, when the speed rotation is constant, the main

difference is due to the size of the matrices E and G but the

results are quite similar.

III. EXPERIMENTAL RESULTS

As a reminder, due to the irregular sub-sampling, spectrum

consists of numerous aliased components that require adapted

methods. Such methods must enable to distinguish real com-

ponents among aliased ones and to estimate their amplitude

accurately, with reasonable computation times. The following

section presents the estimation performances of the proposed

method in terms of MSE, frequency identification capacity and

computation time.

A. Synthetic signal

Let us consider a synthetic signal denoted as ”Signal A”

whose characteristics are coherent in comparison to real test

cases. It is composed of three frequency components, fA
1 =

213Hz, fA
2 = 1626Hz and fA

3 = 1931Hz. A white Gaussian

noise is added whose variance σ2 is:

σ2 = σ2
fA
2

10−SNR/10, (13)

where the signal to noise ratio (SNR) is −10dB and with

σ2
fA
2

the power of fA
2 component. The signal is generated with

C = 5 probes at angular position 3.6◦, 39.6◦, 144◦, 291.6◦

and 313.2◦ during Nt = 200 revolutions (the signal duration

is 0.4s). Rotation frequency is established with a p = 12
autoregressive (AR) process [11] to which an acceleration

trend is added (δFr
= 0.005Hz by revolution) starting from

Fr = 470 Hz to end at 471Hz. It is important to notice that fA
1

aliasings will be located on fA
2 since fA

2 − fA
1 = 3× 471Hz.

The spectral estimation provided by the proposed method

(based on MASS) is compared with the MVSE estimations in

Fig.2. The MIPS and SRM spectra are also given in Fig.2.

The regularization parameter for the LASSO problem is set to

λ = 1. MVSE was set with 5 iterations with 3 windows of

199 revolutions. For SRM, 359 spots and 10−10 as threshold

were used. To represent the frequency range, [0, 2499]Hz, a

grid of M = 2500 points is used with a step of 1Hz. Note

that 1Hz step is a sufficient resolution for this application,

since blades physical responses are spread among a few hertz.

The estimated amplitudes are summarized Table I. MASS

and MVSE methods are quite similar in terms of amplitude

estimation. As expected in the rotation variation context, MIPS

and SRM fail: on MIPS spectrum, numerous aliasings are not

removed and amplitudes are largely underestimated; on SRM

spectrum, one component is missing and estimations are more

erroneous than MASS and MVSE.
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Fig. 2. Signal A spectra with MASS (a), MVSE (b), MIPS (c) and SRM (d).

TABLE I
AMPLITUDE ESTIMATIONS.

fA
1

= 213Hz fA
2

= 1626Hz fA
3

= 1931Hz

Theory 10 1 4

MASS 10.05 1.02 3.67

MVSE 10.19 1.09 3.99

MIPS 5.60 0.29 2.58

SRM 9.76 0 1.99

The tests have been conducted in terms of MSE and

spectrum sparsity for 100 realizations of Signal A with

various signal durations. MSE is calculated separately for

each frequency component and results are given Fig.3. In the

legend, the subscripts indexes, after the name of the method,

indicate the number of revolutions used. Due to excessive

computation time, MVSE has been tested only for 100 and

200 revolutions. MVSE has better performances than MASS

when comparing them for the same number of revolutions.

Nevertheless, increasing the number of samples improves

the MASS performances. With MASS, a large number of

revolutions can be exploited because the model takes into

account the rotation speed variations allowing an increase of

the observation window. For 500 revolutions, the MSE of

MASS is slightly better than the one of MVSE over 200

revolutions, especially for fA
2 component despite fA

1 aliasings.

The performances of the frequency components identifica-

tion are estimated by Sỹ , which is the ℓ2-norm of the spectrum

background (ie. by removing the three frequency components)

and expressed as follows:

Sỹ =

√

√

√

√

M
∑

m=1

|âm|2 −
3

∑

k=1

|âmk
|2, (14)
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where âm is the estimation of a and mk the index of the

frequency components {fA
k }k=1,2,3 of the simulated signals.

Results are given Fig.4. As expected, spectrum background

decreases when SNR increases. Furthermore, the MVSE spec-

trum is less sparse than the MASS one. Beyond a certain num-

ber of revolutions, 200 in this example, the MASS spectrum

background does not decrease anymore but slightly increases.

Consequently, a compromise must be found between sparsity

and estimation accuracy.

The different execution time of MASS, MVSE and MIPS

has been calculated and data are summarized Table II. They

have been gathered under MATLAB R© with a four core Intel R©

Core i7 processor unit cadenced at 2.5GHz. It can be observed

that the execution time of MASS increases practically linearly

with the number of revolutions whereas it increases expo-

nentially for MVSE. Notice that MASS500 is about 10 times

faster than MVSE200 and provides more accurate estimation.

As for MIPS, its time decreasing is due to its number of

iterations falling. Nevertheless, MASS is unquestionably the

fastest method whatever the number of revolutions.
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TABLE II
COMPUTATION TIME (IN SECONDS) FOR MASS, MVSE AND MIPS.

Method

Revolutions
100 200 500

MASS 0.8 1.7 5.5

MVSE 11 48 361

MIPS 11.4 10.7 9.5
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Fig. 5. Engine rotation frequency of Signal B.
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Fig. 6. Signal B spectra with ADMM-MASS (a), MVSE (b) and ADMM-
MIPS (c).

B. Real signal

The real signal, referenced as ”Signal B” is extracted from

data of an experimental compressor test rig. Signal B was

recorded over 200 revolutions and is composed of a unique

frequency component at 1.179. Fig.5 shows the fluctuation

on the rotation frequency and the results of the methods are

given Fig.6 with normalized amplitudes. For ADMM, the

regularization parameter is set to λ = 10−4. MVSE was

set with 3 windows of 199 revolutions over 5 iterations. The

frequency range, [0, 3999]Hz, is computed with M = 4000.

Similarly to synthetic signals, MIPS presents numerous aliased

components and is not well adapted to the signal due to the

rotation frequency variations. MASS and MVSE both provide

an estimate of the frequency component but with about 20%

difference on estimated amplitudes.

Regarding the execution time, MASS took 4s and MIPS

33s with KMASS = KMIPS = 228 iterations whereas MVSE

took 89s with KMV SE = 5 iterations. Comparing to signal

A, the time difference is due to the increase of the range

frequency. However for MASS, this increase is negligible

and MASS is about twenty times faster than MVSE. It can

be explained by the complexity of the algorithms which are

O(2MN2 + 4KMASS(MN + N2) + N3/3) for MASS and

O((4KMV SE + 1)MN2 + 6KMV SEN
3) for MVSE.

IV. CONCLUSION

The non stationarity of the rotation speed needs to be taken

into account for spectral analysis of tip-timing signals. Taking

the rotation speed into consideration allows the presented

method to extend the observation windows, which is an

essential element to reduce aliased components and to improve

amplitudes estimation on the spectra. The proposed method

yields promising results. For long observation windows, it

performs as well as the acknowledged method MVSE and

even surpasses it in terms of spectrum background sparsity and

MSE with a much lower computation time. Its quasi-linearity

with the revolution number makes it very fast compared to pre-

vious methods. Some perspectives are currently investigated

about the choice of the minimization algorithm as well as the

optimization of the probes angular positions.
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