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Abstract—The standard Approximate Message Passing (AMP)
algorithm optionally considers i.i.d. measurement noise. The
governing parameter is the noise variance. When the noise is
independent, but not identically distributed, applying AMP with
the noise variance parameter set to the average of the actual
noise variance results in significantly degraded performance.
We propose a modified AMP algorithm called AMP-VN which
improves performance for known noise variances.

I. INTRODUCTION

Signal acquisition in compressed sensing (CS) is modeled
as [1]

y = Ax+w, (1)

where A is the measurement matrix of size L ×N , L � N
with entries from N (0, L−1). The unknown vector x is
distributed according to fx(x). In the simplest case, this dis-
tribution factors into N identical, one-dimensional probability
density functions fx(x). Often, x is assumed to be sparse in
some sense, e.g. with fx(x) being “Bernoulli-Gaussian”:

fx(x) = (1− γ)δ(x) + γN (0, σ2
x ) (2)

and 0 < γ � 1. The aim is reconstruction of x using the
measurements y and the sensing matrix A. In this paper, the
signal vector x is assumed to be i.i.d. with known probability
density function. Furthermore, the noise variances σ2

w,a are
known. The variant of the original AMP algorithm considered
in this paper was introduced in [2] and is referred to as
Algorithm 1. It assumes that the noise variance is independent
and identical for all entries of y. A thorough discussion of
AMP’s performance in this case can be found in [3].

Subsequently, the noise vector w is assumed to be dis-
tributed according to

w ∼
∏

a

N (0, σ2
w,a). (3)

Furthermore, |V| different variances σ2
w,a are presumed to

exist. The set V is a set of sets, i.e.

V = {W1,W2, . . . ,WK}, (4)

with a set Wk containing all random variables wa with
identical variance. The variance of variables in Wk shall be
denoted σ2

w,k. Equivalently, and slightly abusing notation, the
set Wk contains all indices a for which the random variables
wa have identical variance σ2

w,k.

II. DERIVATION

Subsequently, the derivation of Approximate Message Pass-
ing for Variable Noise Variance (AMP-VN) is presented. It
starts with the Gaussian Message Passing formulation of AMP,
which has its roots in the sum-product algorithm [4] applied
to the complete factor-graph resulting from the dependencies
between y and x. A derivation of AMP’s Gaussian message
passing formulation can be found in [5, pp. 126] and shall
not be repeated here. We follow the established convention
of denoting messages from matrix factor nodes (indices a, b)
to variables (indices i, j) as subscript a→ i (and vice versa).
Whenever sums or products over a, b or i, j occur, these cover
the range {1, . . . , L} and {1, . . . , N} respectively. Similarly,
terms va, vb and vi, vj are entries of vectors in RL and RN
respectively, while targeted messages mi→a and ma→i can be
written as matrices in RN×L and RL×N .

The functions F (µ(l)
x , σ

2(l)
x ) and G(µ(l)

x , σ
2(l)
x ) are applied

component-wise and defined as [5]

Fi(µ
(l)
xi , σ

2(l)
x ) =

∫
xi
xifxi(xi)Nxi(µ

(l)
x,i, σ

2(l)
x )dxi

∫
xi
fxi(xi)Nxi(µ

(l)
x,i, σ

2(l)
x )dxi

Gi(µ
(l)
xi , σ

2(l)
x ) =

∫
xi
x2i fxi(xi)Nxi(µ

(l)
x,i, σ

2(l)
x )dxi

∫
xi
fxi(xi)Nxi(µ

(l)
x,i, σ

2(l)
x )dxi

− Fi(. . . )2.

Algorithm 1 AMP

µz ← y, σ2(l)
x ← ‖y‖22 L−1

σ2
w ← L−1

∑
a σ

2
w,a

Set constants tmax, ε, A.
All other variables are initialized to zero.
repeat
µ

(l)
x ← ATµz + µx

µ
[t−1]
x ← µx

µx ← F (µ
(l)
x , σ

2(l)
x )

σ2
x ← G(µ

(l)
x , σ

2(l)
x )

va ← µz,a

L

∑
i

∂Fi(µ
(l)
x,i ,σ

2(l)
x )

∂µ
(l)
x,i

µz ← y −Aµx + v
σ
2(l)
x ← σ2

w + 1
L

∑
i σ

2
x,i

until t > tmax or t > 1 and
∥∥∥µx − µ[t−1]

x

∥∥∥
2

2
< ε ‖µx‖22

x̂ = µx
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We do not use the soft-thresholding heuristic in our simu-
lations. A complete iteration is examined for the Gaussian
messages’ variances and subsequently for the expectations.

A. Message Passing for Variances

For the variances, an iteration according to the message
passing rules (see [5]) is defined as

σ
2(l)
x,i→a =


∑

b6=a

1

σ2
x,b→i



−1

=


∑

b6=a

A2
b,i

σ2
z,b→i + σ2

w,b



−1

(5)

σ2
x,i→a = G(µ

(l)
x,i→a, σ

2(l)
x,i→a) (6)

σ2
z,a→i =

∑

j 6=i
A2
a,jσ

2
x,j→a. (7)

Using the approximation (as common for AMP, see [5])
A2
a,i ≈ L−1, it is possible to write

σ
2(l)
x,i→a ≈ L


∑

b6=a

1

σ2
z,b→i + σ2

w,b



−1

(8)

σ2
z,a→i ≈

1

L

∑

j 6=i
σ2
x,j→a. (9)

In a second iteration of approximations, assume that all
|Wk| � 1 and that all σ2

z,a→i are approximately equal. The
second assumption is justified if all σ2

x,i→a are approximately
equal ∀a, i. In this case,

σ2
z,a→i ≈ σ2

z =
N − 1

NL

∑

i

σ2
x,i (10)

σ
2(l)
x,∗→a = L

(∑

b

1

σ2
z + σ2

w,b

− 1

σ2
z + σ2

w,a

)−1
(11)

≈ σ2(l)
x = L

(∑

a

1

σ2
z + σ2

w,a

)−1
. (12)

In the step from (11) to (12), |Wk| � 1 is used. The
larger |Wk|, the more the σ2

w,a can differ in magnitude with
the approximation still holding reasonably well. The omitted
term is then small compared to the |Wk| − 1 identical terms
remaining in the sum. Making use of these terms results in

σ2(l)
x = L

( ∑

Wk∈V

∑

b∈Wk

1

σ2
w,k + σ2

z

)−1
(13)

= L

( ∑

Wk∈V

|Wk|
σ2
k

)−1
, (14)

with σ2
k = σ2

w,k + σ2
z . Note that (14) only requires |V| + 1

divisions. Since it is required that |Wk| � 1 and
∑
k |Wk| =

L, |V| needs to be small and thus the computational complexity
is low.

B. Message Passing for Expectations

The message-passing iteration for the expectations is

µz,a→i = ya −
∑

j 6=i
Aa,jµx,j→a (15)

µx,a→i =
µz,a→i
Aa,i

≈ L(Aa,iµz,a→i) (16)

µ
(l)
x,i→a = σ

2(l)
x,i→a

∑

b6=a

µx,b→i
σ2
x,b→i

(17)

≈ σ2(l)
x,i→a

∑

b6=a

L(Aa,iµz,a→i)
L(σ2

z + σ2
w,a)

, (18)

which again uses A2
a,i ≈ L−1. Writing the sum in (18) in

terms of Wk results in

µ
(l)
x,i→a ≈

σ
2(l)
x

L

( ∑

Wk∈V

∑

b∈Wk

µx,b→i
σ2
w,b + σ2

z

− µx,b→i
σ2
w,a + σ2

z

)

(19)

=
σ
2(l)
x

L

( ∑

Wk∈V

1

σ2
k

∑

b∈Wk

µx,b→i −
µx,a→i

σ2
w,a + σ2

z

)
(20)

≈ σ2(l)
x

( ∑

Wk∈V

1

σ2
k

∑

b∈Wk

Ab,iµz,b→i −
Aa,iµz,a→i
σ2
w,a + σ2

z

)
.

(21)

C. From Message Passing to AMP

While the variances have already lost their “targeted”
message-passing character (cf. (10), (12)), expectations are
still updated using message-passing rules, requiring compu-
tation of LN values in each iteration. Similarly to [5, p.108],
the message (21) is dissected:

µ
(l)
x,i→a = µ

(l)
x,i + δ

µ(l)
x,i→a +O(N−1), (22)

using µz,a→i = µz,a + δµz,a→i +O(N−1):

µ
(l)
x,i→a =

∑

Wk∈V

σ
2(l)
x

σ2
k

∑

b∈Wk

Ab,i(µz,b + δµz,b→i +O(N−1))

− σ
2(l)
x

σ2
k

Aa,i(µz,a + δµz,a→i +O(N−1))

=
∑

Wk∈V

σ
2(l)
x

σ2
k

∑

b∈Wk

Ab,i(µz,b + δµz,b→i)

︸ ︷︷ ︸
µ
(l)
x,i

(23)

−σ
2(l)
x

σ2
k

Aa,iµz,a

︸ ︷︷ ︸
δ
µ(l)
x,i→a

+ . . .︸︷︷︸
O(N−1)

. (24)

Terms of size O(N−1) are neglected, which results in Approx-
imate Message Passing. Furthermore, since δµz,a→i = Aa,iµx,i,
(23) can be reformulated as

µ
(l)
x,i =

∑

Wk∈V

σ
2(l)
x

σ2
k

∑

b∈Wk

Ab,iµz,b (25)
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+
∑

Wk∈V

σ
2(l)
x

σ2
k

∑

b∈Wk

A2
b,i︸︷︷︸

≈L−1

µx,i (26)

=
∑

Wk∈V

σ
2(l)
x

σ2
k

∑

b∈Wk

Ab,iµz,b (27)

+ µx,i
σ
2(l)
x

L

∑

Wk∈V

|Wk|
σ2
k

. (28)

Developing (28) by taking into account (14), σ2(l)
x cancels

down and thus

µ
(l)
x,i =

∑

Wk∈V

σ
2(l)
x

σ2
k

∑

b∈Wk

Ab,iµz,b + µx,i (29)

with µ′z,a =
σ
2(l)
x

σ2
k

µz,a, a ∈ Wk (30)

µ(l)
x = ATz′ + µx. (31)

The expression (29) is similar to µ(l)
x = ATz + µx in AMP

and indeed identical for |V| = 1. It remains to deploy the term
δ
µ(l)
x,i→a from (24) in the expression for µx,i→a:

µx,i→a ≈ F (µ(l)
x,i, σ

2(l)
x ) + δ

µ(l)
x,i→a

∂F (µ
(l)
x,i, σ

2(l)
x )

∂µ
(l)
x,i

+O(N−1)

= F (µ
(l)
x,i, σ

2(l)
x )

︸ ︷︷ ︸
µx,i

(32)

−µ′z,aAa,i
∂F (µ

(l)
x,i, σ

2(l)
x )

∂µ
(l)
x,i︸ ︷︷ ︸

δµx,i→a

+O(N−1). (33)

Finally, δµx,i→a appears in µz,a:

µz,a = ya −
∑

j

Aa,j(µx,j + δµx,j→a) (34)

= ya −
∑

j

Aa,jµx,j +
∑

j

A2
a,jµ

′
z,a

∂F (µ
(l)
x,j , σ

2(l)
x )

∂µ
(l)
x,j

= ya −
∑

j

Aa,jµx,j +
µ′z,a
L

∑

j

∂F (µ
(l)
x,j , σ

2(l)
x )

∂µ
(l)
x,j

. (35)

III. STATE EVOLUTION

The framework of State Evolution was first developed by
Donoho, Maleki and Montanari in [6] and rigorously analyzed
in [7]. Using the iterative nature of AMP, a simple recursive
equation for the estimation of σ2(l)

x and σ2
z is derived. Expres-

sions for these variances can be identified in Algorithm 1:

σ2
z = L−1

∑

i

σ2
x,i (36)

σ2(l)
x = σ2

w + σ2
z . (37)

Furthermore, it can be shown [7] that the following represen-
tations are valid in the context of State Evolution:

µ(l)
x ≡ x0 + σ(l)

x u (38)

σ2
x,i ≈ σ2

x = E
{
(F (x0 + σ(l)

x u)− x0)2
}
, (39)

where u ∼ N (0, 1) and x0 is sampled from fx(x). State
Evolution for regular AMP can thus be written as

σ
2(l)
x,[t] = σ2

w + ρ−1E
{
(F[t−1](x0 + σ

(l)
x,[t−1]u)− x0)

2
}
, (40)

where the index [t] is used to identify the recursion iteration.
In AMP-VN, the variance σ2(l)

x is given by (14) contrary to
AMP, where it is simply the sum of the average noise variance
σ2
w and σ2

z . Applying this change to State Evolution results in
an iterative algorithm:

σ
2(l)
x,[t] = L

( ∑

Wk∈V

|Wk|
σ2
w,k + σ2

z,[t−1]

)−1
(41)

σ2
z,[t] = ρ−1E

{(
F (x0 + σ

(l)
x,[t]u)− x0

)2}
. (42)

For |V | = 1, i.e. identical noise variances, the adapted state
evolution recursion (42), (41) reduces to (40).

IV. AMP-VN ALGORITHM AND RESULTS

The complete AMP-VN algorithm is shown in Algorithm 2.
The transformation of µz,a → µ′z,a can intuitively be explained
as a weighting procedure where noisy entries are given less
weight than noiseless samples. Note that the divisions involved
in obtaining µz,a and σ

2(l)
x contain the same denominator.

Compared to AMP, only |V| + 1 additional divisions are
necessary in each iteration; or 2 |V|+1 if one aims for higher
numerical accuracy (which was done for our simulations).

The simulation results were obtained using an i.i.d.
Bernoulli-Gaussian prior for x (cf. (2)) with γ = 0.2. For
the average signal-to-noise ratio (SNR) of the measurements,
the definition

SNRdB = 10 log10

(
‖Ax‖22
‖w‖22

)
(43)

Algorithm 2 AMP-VN

µz ← y, σ2
z ← ‖y‖

2
2 L
−1

Set constants σ2
wa , tmax, ε, A.

All other variables are initialized to zero.
repeat
σ
2(l)
x ← L

(∑
Wk∈V

|Wk|
σ2
w,k+σ

2
z

)−1

µ′z,a ←
σ2(l)
x

σ2
w,a+σ

2
z
µz,a

µ
(l)
x ← ATµ′z + µx

µ
[t−1]
x ← µx

µx ← F (µ
(l)
x , σ

2(l)
x )

σ2
x ← G(µ

(l)
x , σ

2(l)
x )

va ←
µ′z,a
L

∑
i

∂Fi(µ
(l)
x,i ,σ

2(l)
x )

∂µ
(l)
x,i

µz ← y −Aµx + v
σ2
z ← N−1

NL

∑
i σ

2
x,i

until t > tmax or t > 1 and
∥∥∥µx − µ[t−1]

x

∥∥∥
2

2
< ε ‖µx‖22

x̂ = µx
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was used. The undersampling factor is ρ = L
N , with the di-

mension N = 1000, abort threshold ε = 10−4 and tmax = 100
in all simulations. Several settings are compared. First, the
performance of standard AMP for noisy y is examined,
using an i.i.d. Gaussian prior for the noise w. Secondly,
standard AMP is explored for the case of independent, non-
identically distributed noise. Finally, the behavior of AMP-VN
is presented. Three different noise distributions are explored,
in each of which one third of y’s entries are more noisy than
the others. The first two (“variable noise”) use a noise variance
which is 10 and 100 times larger than the remaining entries’
variance. In the third case (“sparse noise”), every third entry
is affected by noise while all other entries are noise-free.

These noise patterns appear in applications with burst-noise
such as wireless communications channels, where AMP can be
used for multi-user detection [8]. Another scheme employing
AMP for decoding are Sparse Regression Codes (SPARCs)
[9]. A SPARC codeword is the sum of several columns of a
wide matrix A, c = Au′, where u′ is a representation of the
user data u (see [9] for details). A communications channel
might apply different attenuations to the transmitted symbols
ca and add i.i.d. noise. This can be modeled as

c′ =HAu′ +w, (44)

where H is the (diagonal) matrix of channel coefficients and
w is the noise. Equalization with H−1 leads to

c′ =H−1HAu′ +H−1w. (45)

The effective noise H−1w is then no longer i.i.d. Optimal
decoding is possible with AMP-VN when H is known suffi-
ciently well.

In this paper, the performance of AMP and AMP-VN is
evaluated using the signal-to-distortion ratio (SDR):

SDRdB = 10 log10

(
‖x‖22
‖x̂− x‖22

)
. (46)

Fig. 1 shows the phase transitions for AMP and AMP-VN.
The behavior of AMP is examined for i.i.d. noise and sparse
noise, showing that it is identical for both: it does not matter
whether all samples of y are equally affected by noise or one
third in particular. The similarity in performance is also visible
in Fig. 4. The performance of AMP is visibly affected by the
noise, resulting in a low recovery SDR even for regions where
it converges.

The proposed AMP-VN algorithm makes use of the
knowledge about individual noise variance. In Fig. 1,
AMP-VN’s phase transition curve can be seen to move towards
lower SNR and lower subsampling factor ρ with increasing
contrast between the σ2

w,k. For “sparse noise” its performance
does not deteriorate even in regions with low average SNR.
For all three noise distributions, AMP-VN significantly out-
performs regular AMP in terms of recovery SDR, as can
be seen in Fig. 5. In case of low SNR but sparse noise,
AMP-VN compares in performance to regular AMP with the
noisy samples removed, as intuition suggests. This is shown

in Fig. 2, where noiseless AMP is compared with AMP-VN
at 0 dB SNR and sparse noise. One third of all entries of y
are affected by noise. The phase transition for noiseless AMP
happens at ρ ≈ 0.35 while for noisy AMP-VN it occurs at
ρ ≈ 0.55. The scaled SDR curve takes into account that
AMP-VN has 66.7% of AMP’s noise-free samples at its
disposal. Discarding noisy samples and using regular AMP
for recovery is thus a valid strategy in the low-SNR regime.
For higher SNR, not taking into account noisy samples incurs
a performance penalty as shown in Fig. 2.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

ρ

SN
R

[d
B

]

AMP, i.i.d. noise
AMP, sparse noise

AMP-VN, variable noise(1)
AMP-VN, variable noise(2)

AMP-VN, sparse noise

Fig. 1. Phase transition for Bernoulli-Gauss prior. The recovery SDR is larger
than 10dB northeast of the curve. The dotted lines are the result of State
Evolution estimation of the 10dB recovery SDR threshold of the associated
curve. The SNR on the y-axis is the average measurement noise according to
(43), ρ is the undersampling factor.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

ρ

SD
R

[d
B

]

AMP, noiseless
AMP-VN, 0dB SNR

AMP-VN, 15dB SNR
scaled AMP

Fig. 2. Recovery SDR versus subsampling factor ρ for noiseless AMP
and AMP-VN in presence of sparse noise. The “scaled AMP” plot is for
comparison purposes only and explained above. The dotted curves are the
result of State Evolution for AMP-VN at 15dB and 0dB SNR in presence of
sparse noise. In the convergence region the predicted SDR deviates due to
differing abortion criteria.

In Fig. 3, results from original and modified State Evolution
iterations as defined in Section III can be seen. The modifi-
cation to State Evolution does not change the behavior of the
“denoiser” F (. . . ), which is the same for all cases. Behavior of
original AMP is identical to the case of i.i.d. noise. The cutoff
of AMP-VN is at lower values of σ2

z for non-i.i.d. noise. State
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evolution also predicts the perfect recovery in case of sparse
noise, which fits well with our other results (cf. Fig. 5).

V. CONCLUSIONS

The original AMP algorithm performs poorly for unevenly
distributed measurement noise. An adapted algorithm is pro-
posed which overcomes these limitations. A rigorous deriva-
tion as well as a State Evolution framework are provided.
In the limiting case of sparse noise and low SNR, AMP-
VN offers comparable performance to standard AMP after
the removal of all noisy samples. For higher SNR, AMP-VN
significantly outperforms AMP by using information owed to
noisy samples.

10−4 10−3 10−2 10−1
10−4

10−3

10−2

10−1

σ2
z

σ
2
(l
)

x

σ2
z = E

{
F (. . . σ

2(l)
x )

}

i.i.d. noise
variable noise (1)
variable noise (2)

sparse noise

Fig. 3. “Exit-plot”: the evolution of σ2
z and σ

2(l)
x , estimated with State

Evolution for a subsampling factor ρ = 0.6 and SNR = 10dB.
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SNR. Standard AMP with i.i.d. noise (top), with sparse noise (bottom).
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Fig. 5. Recovery SDR [dB] (color coded) vs. subsampling ratio ρ and noise
SNR. AMP-VN with variable noise (variant 2, top) and sparse noise (bottom).
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