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Abstract—The groundbreaking theory of compressive sen-
sing (CS) enables reconstructing many common classes or
real-world signals from a number of samples that is well
below that prescribed by the Shannon sampling theorem,
which exclusively relates to the bandwidth of the signal.
Differently, CS takes profit of the sparsity or compressibility of
the signals in an appropriate basis to reconstruct them from
few measurements. A large number of algorithms exist for
solving the sparse recovery problem, which can be roughly
classified in greedy pursuits and l1 minimization algorithms.
Chambolle and Pock’s (C&P) primal-dual l1 minimization
algorithm has shown to deliver state-of-the-art results with
optimal convergence rate. In this work we present an algo-
rithm for l1 minimization that operates in the null space of
the measurement matrix and follows a Nesterov-accelerated
gradient descent structure. Restriction to the null space allows
the algorithm to operate in a minimal-dimension subspace. A
further novelty lies on the fact that the cost function is no
longer the l1 norm of the temporal solution, but a weighted
sum of its entropy and its l1 norm. The inclusion of the
entropy pushes the l1 minimization towards a de facto quasi-
l0 minimization, while the l1 norm term avoids divergence.
Our algorithm globally outperforms C&P and other recent
approaches for l1 minimization in terms of l2 reconstruction
error, including a different entropy-based method.

I. INTRODUCTION

The Shannon sampling theorem states that a function,

defined in time domain over a certain interval and whose

frequency spectrum is bounded, is fully determined by a set

of equally-spaced temporal samples at a rate that is twice

the maximum frequency contained in the signal, also known

as Nyquist rate. Obviously, in acquisition systems where a

large bandwidth is desired this translates into massive data

streams, with the corresponding requirements in terms of

storage and communications. The groundbreaking theory

of compressive (or compressed) sensing (CS) goes a step

further and states that signal reconstruction is feasible from

a number of measurements that is no longer directly linked

to the signal bandwidth, but to the signal sparsity or com-
pressibility in an appropriate basis. This means that signals

exhibiting some structure, which can be represented using

only few vectors from an appropriate basis or dictionary, can

be exactly reconstructed from a number of measurements

that relates linearly to the sparsity and is independent from

the bandwidth of the signal.

The CS pipeline can be divided in two steps: first sensing

in a compressed fashion, that is, condensing as much infor-

mation of the signal in as few measurements as possible.

Second, reconstructing the original signal from this reduced

set of measurements. If no restrictions on the acquisition

hardware are given, the first step can be considered solved.

Random matrices, e. g., with coefficients drawn from i.i.d.
Gaussian or Bernoulli distributions, have been proven to

be good CS sensing matrices [1]. The remaining challenge

is then reconstructing the original signal in its sparse re-

presentation from the measurements obtained using such

sensing matrices. This means, in fact, solving a linearly-

constrained l0 minimization, which is an NP-hard problem.

Fortunately, it can be proven that under certain conditions a

linearly-constrained l1 minimization converges to the same

minimizer as its l0 counterpart [2]. For this reason most

methods for CS sparse signal recovery look for the solution

with minimal l1 norm that satisfies the measurements.

Of special interest are those methods operating in the null

space of the measurement matrix, such as the l1-minimizing

Kalman filter [3], [4]. In this paper we propose a novel

method that, also working in the null space, no longer

minimizes the l1 norm, but a weighted sum of the l1 norm

and an entropy-like function of the signal components. The

proposed algorithm outperforms state-of-the-art approaches

solving pure l1 minimization in terms of sparse recovery

error.

II. THE COMPRESSIVE SENSING SCENARIO

Differently from the Shannon sampling theorem, which

requires the signal to be bandlimited, CS theory [5], [6]

imposes the more general requirement of the signal being

sparse in some basis or tight frame. If this holds and some

additional requirements regarding the sensing scheme are

satisfied, then the signal can be exactly recovered from few

non-adaptive measurements. Let �x ∈ C
n be the discrete

signal we want to recover, in its sparse representation. The

l0 norm of �x is defined as:

‖�x‖0 := lim
p→0

‖�x‖pp = | supp (�x)| (1)
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that is, the cardinality of the support of �x, and �x is called

an s-sparse signal if ‖�x‖0 ≤ s. Provided that the sparsity

requirement is satisfied (s � n), the challenge is to

reconstruct �x from m � n linear measurements. Thus, the

measurement model is described by the underdetermined

linear system:

�y = AAA�x (2)

where AAA ∈ C
m×n is the measurement matrix, which

explains how the vector of measurements �y ∈ C
m relates

to �x and may be the composition of the actual sensing
matrix, and a dictionary. As mentioned before, finding the

sparsest �x satisfying Eq. 2 is known to be NP-hard, and a

common workaround is convexifying the problem turning

the l0 minimization into l1, yielding:

�̂x = argmin
�x∈Cn

‖�x‖1 subject to �y = AAA�x, (3)

The equality constraint in Eq. 3 can be implicitly enforced

by conducting the minimization process within the null
space or kernel of the matrix, defined as the set of vectors

that are projected to zero by it, that is,

N (AAA) =
{
�x | AAA�x = �0

}
(4)

Provided that Eq. 2 only imposes m constraints, the null

space is an n−m-dimensional subspace of Cn. Given any

particular solution to Eq. 2, �x0, Eq. 3 can be reformulated

as:

�̂x = argmin
�x∈{N (AAA)+�x0}

‖�x‖1
= �x0 +EEEN (AAA)�̂n, with:

�̂n = argmin
�n∈Cn−m

∥∥�x0 +EEEN (AAA)�n
∥∥
1

(5)

where EEEN (AAA) ∈ C
n×(n−m) denotes a basis of N (AAA).

III. RELATED WORK

Primal-dual interior point methods have shown to be

efficient tools for solving Eq. 3. Provided that the problem

in Eq. 3 can be directly expressed as a linear program, the

classical Newton method can be used to approach a solution,

as in the l1-magic library [7]. A prominent alternative is

the Chambolle and Pock’s (C&P) primal-dual algorithm [8],

a first-order primal-dual method for convex optimization

problems with saddle-point structure and convergence rate

O(1/n). A novel adaptive approach for solving the con-

strained l1 minimization problem based on the scale space

method was proposed in [9].

Using a Kalman filter for estimating sequences of sparse

signals from a reduced set of compressed measurements

was initially proposed in [11]. Differently from [11], [12],

where the sparse recovery algorithm is uncoupled from the

probabilistic filter, in [13] the norm to minimize, typically

the l1 norm, is included as an additional measurement.

Independently from the aforementioned works, a Kalman

filter for solving Eq. 3 was proposed in [3] and further

studied in [4], [14]. The l1 norm of the temporal solution is

the only measurement of the filter, which has the peculiarity

of operating in N (AAA). At each iteration the algorithm tries

to push down the l1 norm of the temporal solution by

incorporating a measurement that is slightly lower than the

actual l1 norm.

Apart from the previous approaches for l1 minimization,

a number of greedy algorithms exist that try first to estimate

the signal support and then solve the resulting overde-

termined problem. Known examples are Matching Pursuit

(MP) [15], OMP [10], Order Recursive Matching Pursuit

(ORMP) [16], Regularized Orthogonal Matching Pursuit

(ROMP) [17], and Compressive Sampling Matching Pursuit

(CoSaMP) [18], among many others. Greedy algorithms are

specially appealing when the sparsity s is very low, since

the number of iterations is directly given by s.

Reviewers pointed out some references where entropy-

like priors are combined with sparsity-promoting penalties,

e. g., in Nuclear Magnetic Resonance (NMR) spectrum

reconstruction, but these works focus on entropy maximi-
zation, while we use entropy as a sparsity-promoting term

itself, to be minimized. More related is the entropy-based

algorithm in [19], which we include in our experimental

evaluation.

IV. SPARSE SIGNAL RECOVERY VIA ENTROPY

MINIMIZATION

Let Z be a discrete random variable with n possible

values z1, z2, . . . , zn and let P (zi) denote the probability

of occurrence of zi. Then the classical Shannon entropy is

given by:

H(Z) = −
n∑

i=1

P (zi) logP (zi) (6)

At this point we propose considering the sparse vector to

recover �x as a representation of some discrete probability

density function, whose entropy is to be minimized. Despite

this may seem to be an exotic interpretation, note that

minimizing the entropy of a discrete probability distribu-

tion will concentrate the probability in only few discrete

events. In fact, minimal (zero) entropy is attained when all

probability is concentrated in a single event, since this is

a sure event and entropy measures unpredictability. In our

case this means looking for the signal support set of minimal

cardinality, that is, de facto approaching a solution to Eq. 1.

Formally, we establish the following correspondence:

P (zi) =
|xi|
‖�x‖1

, ∀1 ≤ i ≤ n (7)

Using the change of variables in Eq. 7 we can write our

entropy-like cost function acting directly over �x as:

Hvec(�x) = −
n∑

i=1

|xi|
‖�x‖1

log

( |xi|
‖�x‖1

)

=
1

‖�x‖1

(
‖�x‖1 log ‖�x‖1 −

n∑
i=1

|xi| log |xi|
) (8)
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From both expressions in Eq. 8 it clearly follows that the

minimum value Hvec(�x) = 0 is attained when there is a

single nonzero coefficient, say at position innz, and we have

that ‖�x‖1 = |xinnz
|.

In this work we aim to solve the signal recovery problem

in N (AAA) (Eq. 4), which ensures satisfaction of Eq. 2

and operation in a minimum-dimensional subspace. One

might be tempted of substituting the l1 norm by Eq. 8 in

Eq. 5 directly. Note that this will not work, since Hvec(·)
is insensitive to the actual values of the coefficients xi,

whose amplitude can grow without bounds, due to the l1
normalization in Eq. 7. To solve this issue we include also

the l1 norm in the cost function with a weighting parameter

0 < α ≤ 1, yielding:

Hl1(�x) =
α

‖�x‖1

(
‖�x‖1 log ‖�x‖1 −

n∑
i=1

|xi| log |xi|
)

+ (1− α) ‖�x‖1
(9)

Eq. 5 can now be rewritten using Hl1(·) instead of ‖·‖1,

yielding:

�̂x = argmin
�x∈{N (AAA)+�x0}

Hl1(�x)

= �x0 +EEEN (AAA)�̂n, with:

�̂n = argmin
�n∈Cn−m

Hl1

(
�x0 +EEEN (AAA)�n

) (10)

The minimization in Eq. 10 is not a convex problem. First,

the l1 norm is not differentiable over the full domain, and

second, it can be easily shown that our entropy-like function

is not convex. Nevertheless, as it is often the case in practice,

some simple methods for convex optimization offer very

good results solving some types of non-convex problems. In

this work we propose using a Nesterov-accelerated gradient
descent (GD) scheme for solving the optimization in Eq. 10.

We adopt the general scheme for convergence acceleration

proposed in [20] with backtracking line search. The algo-

rithm requires knowledge of the gradient of Hl1(�x) w.r.t.

the optimization variable �n ∈ C
n−m, which was found to

be:

δHl1(�x0 +EEEN (AAA)�n)

δ�n
={[(

1− α

(
1 +

log |xi|
‖�x‖1

))
sign(xi)

]n
i=1

}∗
EEEN (AAA)

(11)

where the term that premultiplies EEEN (AAA) is an n-

dimensional row vector. It is worth noting that equivalence

to the pure l1 minimization problem holds if:

− log |xi|
‖�x‖1

= 1 ⇐⇒ |xi| = e−‖�x‖1 ∀i (12)

We found out that our accelerated GD scheme exhibits

good performance in practice, quite independently from α.

V. EXPERIMENTS AND RESULTS

The proposed null-space-based hybrid l1 and entropy-

minimizing algorithm is compared to the following well-

known alternatives: OMP [10], the Chambolle and Pock’s

(C&P) primal-dual algorithm [8], Loffeld’s l1-minimizing

Kalman filter [3], the Adaptive Inverse Scale Space (aISS)

algorithm [9], a baseline minimizing the l1 norm via GD on

null-space domain (with and without Nesterov acceleration),

and the entropy-based algorithm in [19]. Only Loffeld’s

l1-minimizing Kalman filter operates in N (AAA). We use

an improved version of the l1-minimizing Kalman filter

including process noise covariance. Our implementation

of the entropy-based algorithm in [19] handles complex

signals. The weighting parameter of our algorithm is set

to α = 0.9.

A series of experiments has been carried out to evaluate

the different approaches in terms of sparse recovery per-

formance in the CS sparse recovery problem. We use best
complex antipodal spherical codes (BCASCs) as close-to-

optimal measurement matrices AAA ∈ C
m×n in Eq. 2. Our

own fast implementation of the method in [21] was used to

construct each AAA. We generate full Donoho-Tanner graphs of

normalized l2 recovery error. Each pixel of the graph means

a different combination of the parameters δ = m/n and ρ =
s/m. Our graphs are generated with 32 × 32 experimental

cases, using equally-spaced discrete steps per parameter. For

each pixel 32 independent experiments are conducted and

averaged results are shown. For each experiment a different

s-sparse signal �x ∈ C
n is randomly generated. Both the real

and imaginary parts of the nonzero complex coefficients are

drawn from i.i.d. normal distributions of zero mean and unit

variance, and the resulting �x is then l2-normalized. For all

experiments the signal length is set to n = 128.

Figs. 1 and 2 show the Donoho-Tanner graphs of nor-

malized l2 recovery error obtained for each algorithm after

250 (Fig. 1) and 2000 (Fig. 2) iterations. From the results in

Figs. 1 and 2 it seems that C&P offers the best performance

among algorithms solving an l1 minimization, while OMP

delivers the smallest failure region. In comparison to OMP

our method offers superior performance in the failure region

(top-left) of the greedy pursuit, but is inferior elsewhere.

Both the l1-minimizing Kalman filter and our Nesterov-

accelerated GD baseline converge to exactly the same results

as C&P, offering no further improvement. Operation in

N (AAA) and the absence of a thresholding step may be

considered advantages over C&P. The aISS method offers a

performance that also approaches quite tightly that of C&P,

but is inferior for the cases of lowest ratio δ = m/n.

The proposed method is the only one that, not being a

greedy pursuit, is able to offer a sparse signal recovery

performance that is sensibly superior to that of C&P. The

failure region appears further confined in the top-left corner

and the transition border between success and failure has

been pushed towards the left, especially in the upper half

of the graph. Rather surprising is the bad performance

of the method in [19], which uses a modified entropy

functional. Also, the method is between one and two orders

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 575



0.2 0.4 0.6 0.8 1
 (m/n)

0.2

0.4

0.6

0.8

1
 (s

/m
)

(a) OMP

0.2 0.4 0.6 0.8 1
 (m/n)

0.2

0.4

0.6

0.8

1

 (s
/m

)

(b) Chambolle & Pock’s

0.2 0.4 0.6 0.8 1
 (m/n)

0.2

0.4

0.6

0.8

1

 (s
/m

)

(c) Kalman Filter

0.2 0.4 0.6 0.8 1
 (m/n)

0.2

0.4

0.6

0.8

1

 (s
/m

)

(d) aISS

0.2 0.4 0.6 0.8 1
 (m/n)

0.2

0.4

0.6

0.8

1

 (s
/m

)

(e) GD in null space

0.2 0.4 0.6 0.8 1
 (m/n)

0.2

0.4

0.6

0.8

1

 (s
/m

)

(f) Nesterov acc. GD

0.2 0.4 0.6 0.8 1
 (m/n)

0.2

0.4

0.6

0.8

1

 (s
/m

)

(g) Modified Entropy

0.2 0.4 0.6 0.8 1
 (m/n)

0.2

0.4

0.6

0.8

1

 (s
/m

)

(h) Ours

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1: Donoho-Tanner graphs of the recovery errors obtained after 250 iterations using OMP (a), the Chambolle and

Pock’s algorithm (b), the l1-minimizing Kalman filter (c), aISS (d), l1-minimization via gradient descent on null-space

domain without (e) and with (f) Nesterov acceleration, a modified-entropy minimization (g) and our approach (h).
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Fig. 2: Donoho-Tanner graphs of the recovery errors obtained after 2000 iterations using the same methods as in Fig. 1.

of magnitude slower than the rest. A deeper analysis of this

algorithm showed that it is not suited for sparse signals with

small nonzero coefficients, like the l2-normalized signals

we use. This is due to the combined effect of the absence

of, e. g., an l1 normalization of the amplitude within the

logarithm of the entropy functional and the addition of a

constant factor to prevent the argument of the logarithm

from reaching zero.

For a better visualization of the improvement we use

semaphoric graphs, where a triplet of colors is used for

the cases of better (green), equivalent (amber), and worse

performance (red). The semaphoric graphs obtained against

C&P, the Kalman filter, aISS, and the modified entropy

method are shown in Fig. 3. Clearly our method brings a

massive improvement exactly in the area of the Donoho-

Tanner graphs where it is most desired, namely the transition

region, further confining the failure area in the top-left

corner. Note that the red area in the top-left corner of

Fig. 3a-c is not relevant, since it correspond to failure cases

in the competitor methods.

VI. CONCLUSION

In this paper we have proposed solving the CS sparse

reconstruction problem by means of minimizing a linear

combination of the l1 norm and an entropy-like function.

The minimization problem is formulated in null space dom-

ain, so that our algorithm effectively works in a subspace

of minimal dimension. Despite the non-convexity of our

cost function, we have observed that classical methods for

solving convex problems can offer, in practice, a very good

approximation to the proposed minimization problem. We

use a Nesterov-accelerated gradient descent scheme for our

iterative solver.
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Fig. 3: Semaphoric graphs obtained from the Donoho-Tanner graphs in Fig. 2. The graphs show in which cases the

proposed method performs better (green), equivalently (amber), or worse (red) than comparable alternatives.

We carried out extensive simulations to evaluate the

performance of the proposed approach as sparse recovery

algorithm. In the experiments many different synthetically-

generated s-sparse n-dimensional complex signals were

recovered from m < n measurements. Full Donoho-

Tanner graphs of the (average) normalized reconstruction

error were generated for the entire range of the parameters

0 < δ = m/n ≤ 1 and 0 < ρ = s/m ≤ 1. The proposed

approach was compared to other seven reference algorithms,

namely: OMP, the C&P’s primal-dual algorithm, Loffeld’s

l1-minimizing Kalman filter, the aISS method, two GD-

based baselines (our approach with α = 0, with and without

Nesterov acceleration), and a method using a modified

entropy function. The results show that the proposed method

offers a sparse recovery performance that is globally supe-

rior to that of all other non-greedy methods and also locally

superior to OMP. While the l1-minimizing Kalman filter

and our Nesterov-accelerated GD-based baseline converge

to the same results as C&P, our method sensibly shifts the

transition in the Donoho-Tanner graphs to the left.

ACKNOWLEDGMENT

The authors would like to thank Prof. M. Möller, Dr. K.
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