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Abstract—In this paper, we aim at designing a set of
binary sequences with good aperiodic auto- and cross-
correlation properties for Multiple-Input-Multiple-
Output (MIMO) radar systems. We show such a set
of sequences can be obtained by minimizing the Inte-
grated Side Lobe (ISL) with the binary requirement
imposed as a design constraint. By using the block
coordinate descent (BCD) framework, we propose an
efficient monotonic algorithm based on Fast Fourier
Transform (FFT), to minimize the objective function
which is non-convex and NP-hard in general. Simula-
tion results illustrate that the ISL of designed binary
set of sequences is the neighborhood of the Welch
bound, indicating its superior performance.

Index Terms—Binary Sequences Set, Block
Coordinate Descent (BCD), Integrated Sidelobe Level
(ISL), Multiple-Input-Multiple-Output (MIMO),
Radar Waveform Design.

I. Introduction
Orthogonal waveforms are the key to many advantages

in colocated/widely-separated MIMO radar systems. In
colocated MIMO radar systems, orthogonal waveforms
create a filled virtual aperture, which enhances spa-
tial resolution of the receive array, improves detection
performance and refines parameter identifiability [1]–[5].
In widely separated MIMO radar systems, orthogonal
waveforms are used to ensure the capability of separating
and processing the waveforms individually at the receive
side [1].
In order to achieve waveform orthogonality in MIMO
radar systems, several approaches, including frequency-
division-multiplexing (FDM) [6], [7], Doppler-division
multiplexing (DDM) [8], [9], time-division-multiplexing
(TDM) [10] and code-division-multiplexing (CDM) [2],
[11], [12] have been developed. Among them, FDM,
DDM, and TDM can provide almost perfect orthogo-
nality. However, comparing with CDM, they suffer from
strong azimuth-Doppler coupling, lower amount of max-
imum Doppler frequency and shorter target detection
range, respectively [13]. Therefore, designing sets of phase
coded waveforms with small auto-correlation sidelobes1

1Small auto-correlation sidelobes, indicates that any sequence in
the set is approximately uncorrelated with its own time shifted
versions and therefore it avoids masking weak targets within the
range sidelobes of a strong target.

and low cross-correlation2 for CDM-MIMO radar systems
is the point of common interest (see [2], [14]–[19] and
references therein as some examples).
However, most of the recent works have not considered
practical constraints such as discrete-phase or binary
set of sequences. In active sensing and radar systems,
due to the both simplicity of the implementation and
Doppler tolerance, set of sequences whose entries are +1
or −1, are typically preferred to the continuous phase3

sequences [20], [21]. Such a set of sequences, provided that
have small aperiodic auto-correlation sidelobes and low
cross-correlations values, are intrinsically suited for both
separation of signals from noise and discrimination of the
waveforms at output of the matched filter. Unfortunately,
neither the well-known Minimum Peak Sidelobe (MPS)
sequences [22], nor Gold, Kasami or M -sequences, which
are prevalent in single-input-single-output (SISO) radar
systems [23], have good properties in terms of auto- and
cross-correlation functions.
In this paper, we propose a mathematical approach
for designing binary sequences set by minimizing the
important measure of ISL4 quantifying the goodness
in correlation functions. The proposed method can be
used in MIMO radar waveform design, as well as other
signal processing applications, including spread spectrum
communications, channel estimation, fast start-up equal-
ization and sonar systems. To tackle the NP-hard binary
sequence design problem, the paper proposes an itera-
tive block coordinate descent algorithm. The proposed
method uses an efficient algorithm based on the FFT to
obtain sets of binary sequences which almost meet the
Welch lower bound [12], [19], [24].

II. Problem Formulation

Let us consider a MIMO radar system with NT trans-
mit antennas. The m-th antenna transmits a code vector

2Low cross-correlation means that any member of the sequences
in the set is roughly uncorrelated with any other members at any
shift.

3Sequences which have arbitrary phases in [0, 2π).
4A mathematical definition for the ISL in MIMO radar systems

is provided in the next section.
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composed of N sub-pulses that can be expressed as,

xm = [xm(1), xm(2), . . . , xm(N)]T ∈ CN , m ∈ [1, NT ],
(1)

where xm(n) is the n-th sub-pulse of the transmit code
vector xm. Let {xm}NT

m=1 be columns of the code matrix
X, viz.,

X = [x1, x2, . . . , xNT
] ∈ CN×NT . (2)

The aperiodic cross-correlation [25] of {xm(n)}N
n=1 and

{xl(n)}N
n=1 at lag k is defined as,

rml(k) =
N−k∑
n=1

xm(n)x∗
l (n + k) = r∗

lm(−k),

m, l = 1, . . . , NT , − N + 1 ≤ k ≤ N − 1, (3)

when m = l, (3) becomes the aperiodic auto-correlation
of {xm(n)}N

n=1. Notice that, the in-phase lag of auto-
correlation function (i.e., k = 0), represents the energy
component of the sequence whereas the out-of-phase lag
(i.e., k ̸= 0) represent the sidelobes. The commonly used
metric for the goodness of correlation function for the
code matrix X is the ISL which is defined as [11], [12],

ISL =
NT∑

m=1

N−1∑
k=−N+1

k ̸=0

|rmm(k)|2 +
NT∑

m,l=1
m̸=l

N−1∑
k=−N+1

|rml(k)|2. (4)

Since the design problem is constrained to the family of
binary sequences, the n-th sub-pulse at m-th transmit
antenna can be written as,

xm(n) ∈ {−1, 1}, m = 1, . . . , NT and n = 1, . . . , N
(5)

Therefore, the optimization problem can be cast as,
min
X

NT∑
m=1

N−1∑
k=−N+1

k ̸=0

|rmm(k)|2 +
NT∑

m,l=1
m̸=l

N−1∑
k=−N+1

|rml(k)|2

s.t. xm(n) ∈ {−1, +1}, m=1,...,NT

n=1,...,N

(6)
which is a non-convex NP-hard problem [26].

III. The Proposed Method
This section introduces an iterative derivative-free op-

timization algorithm, based on the BCD minimization
procedure, by updating just one or a few blocks of
variables at a time, rather than updating all the blocks
together (the batch update) [27]. Indeed, to handle the
minimization problem of this paper, we need to loop
over all the coordinates and resort to the following sub-
problems:

• Outer loop; Pick a coordinate t from 1, . . . , NT

and design a code vector xt keeping the other code
vectors fixed.

• Inner loop; Pick a coordinate d = 1, . . . , N in the
selected coordinate t to optimize each scalar variable
xt(d) of xt, keeping fixed the other entries of the
code vector xt.

Therefore, by solving a sequence of simpler optimization
problems, each subproblem will have a lower dimension
in the minimization procedure, and thus can typically
be solved easier than the original problem. To tackle
Problem (6), we define

f̃1(X) =
NT∑

m=1

N−1∑
k=−N+1

k ̸=0

|rmm(k)|2 ,

f̃2(X) =
NT∑

m,l=1
m̸=l

N−1∑
k=−N+1

|rml(k)|2,

where f̃1(X) and f̃2(X) stand for the summation of the
auto-correlation sidelobes of all different NT sequences,
and summation of the cross-correlation between all dif-
ferent NT sequences, respectively. Consequently, the ISL
metric defined in (4), can be written as f̃(X) = f̃1(X)+
f̃2(X). We aim to design the good set of sequences X⋆

by solving the following optimization problem,

PX =

min
X

f̃(X)

s.t. xm(n) ∈ {−1, +1}, m=1,...,NT

n=1,...,N

(7)

according to the BCD framework. The idea to tackle PX
is summarized below:

• Pick coordinate t from 1, 2, . . . , NT .
• Set x

(i+1)
t = arg min

xt

f̃(xt, X
(i)
−t).

where X
(i)
−t represent all other coordinates which kept

fixed during the iteration (i + 1) of the outer loop, i.e.,

X
(i)
−t =

[
x

(i)
1 , x

(i)
2 , . . . , x

(i)
t−1, x

(i)
t+1, . . . , x

(i)
NT

]
∈ CN×NT −1.

Further, to obtain the optimal code entry xt(d), we
undertake the following steps:

• Pick coordinate d from 1, 2, . . . , N .
• Set x

(h+1)
t (d) = arg min

xt(d)
ĝ(xt(d), x

(h)
t,−d).

where x
(h)
t,−d represent all other coordinates of the code

vector xt which are keeping fixed at iteration (h + 1)
of the inner loop. Accordingly, in the outer loop, the
optimization Problem PX at iteration (i + 1) boils down
to

P
t,X(i) =

min
xt

f̃(xt, X
(i)
−t)

s.t. xt(n) ∈ {−1, +1}, n = 1, . . . , N
(8)

where

f̃(xt, X
(i)
−t) = f̃

(
x

(i)
1 , x

(i)
2 , . . . , x

(i)
t−1, xt, x

(i)
t+1, . . . , x

(i)
NT

)
.

Thus, denoting by X
⋆(i+1)
t the optimal solution to

P
t,X(i) , the optimized code matrix at iteration (i + 1)

becomes,

X
⋆(i+1)
t =

[
x

(i)
1 , x

(i)
2 , . . . , x

(i)
t−1, x⋆

t , x
(i)
t+1, . . . , x

(i)
NT

]
.

In the inner loop, we go through t-th selected block and
choose the scalar xt(d) as the variable to be optimized,
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put the remaining code entries at iteration (h + 1) in the
vector x

(h)
t,−d ∈ CN−1 defined as,

x
(h)
t,−d = [x(h)

t (1), . . . , x
(h)
t (d − 1), x

(h)
t (d + 1), . . . , x

(h)
t (N)]T ,

and form the optimization problem,

P
d,x(h)

t

min
xt(d)

ĝ
(

xt(d); x
(h)
t,−d

)
s.t. xt(d) ∈ {−1, +1}

(9)

at iteration (h + 1) of the inner loop, where,

ĝ(xt(d); x
(h)
t,−d) = ĝ1(xt(d); x

(h)
t,−d) + ĝ2(xt(d); x

(h)
t,−d)

≡ ĝ(x(h)
t (1), . . . , x

(h)
t (d−1), xt(d), x

(h)
t (d+1), . . . , x

(h)
t (N)),

with ĝ1(xt(d); x
(h)
t,−d) =

∑N−1
k=−N+1

k ̸=0
|rtt(k)|2,

ĝ2(xt(d); x
(h)
t,−d) =

NT∑
l=1
l ̸=t

N−1∑
k=−N+1

|rtl(k)|2.

Thus, the optimized code vector at the t-th transmit
antenna is,

x
(h+1)
t = [x(h)

t (1), x
(h)
t (2), . . . , x⋆

t (d), . . . , x
(h)
t (N)]T .

where x⋆
t (d) is the solution to (9). As the result, starting

from an initial code matrix X(0), the code matrices X(1),
X(2), X(3), . . . are obtained iteratively5.
A. Code Entry Simplification

The reliance of ĝ1(xt(d); x
(h)
t,−d) and ĝ2(xt(d); x

(h)
t,−d) on

the only variable xt(d) can be explicitly expressed as,
rtt(k) = adktxt(d) + cdkt, k = −N + 1, . . . , N − 1 (10)

where6 adkt , x
(h)
t (d + k)IA(d+k)+x

(h)
t (d − k)IA(d−k),

cdkt ,
N−k∑

n=1,n̸={d,d−k}

x
(h)
t (n)x(h)

t (n + k)IA(k + 1)

+
N∑

n=−k+1,n̸={d,d−k}

x
(h)
t (n)x(h)

t (n + k)IB(k),

with IA(k) and IB(k) being the indicator functions of
sets A = {1, 2, . . . , N} and B = {−1, −2, . . . , −N + 1}
respectively, i.e., IA(v) = 1 if v ∈ A, otherwise IA(v) = 0.
Similarly, the cross-correlation function rtl(k) with ex-
plicit dependence on xt(d) becomes,

rtl(k) = adklxt(d) + cdkl, k = −N + 1, . . . , N − 1, (11)

with adkl , x
(h)
l (d + k)IA(d+k), k = −N +1, . . . , N −1,

cdkl ,
N−k∑

n=1,n̸=d

x
(h)
t (n)x(h)

l (n + k)IA(k + 1)

+
N∑

n=−k+1,n̸=d

x
(h)
t (n)x(h)

l (n + k)IB(k).

5The super scripts (i) and (i + 1) for xt and x⋆
t is implicit and

omitted for simplicity.
6For notational simplicity, the dependency of auto- and cross-

correlation to the iteration index h is implicitly assumed and hence
omitted.

B. Binary Code Design
Discrete Fourier Transform (DFT) is the motivation

to tackle Problem P
d,x(h)

t
. Notice that the phase variable

ϕt(d) = arg(xt(d)) ∈ {0, π}, the problem can be recast
as,

min
ϕt(d)

N−1∑
k=−N+1

k ̸=0

|rtt,ϕt(d)(k)|2 +
NT∑
l=1
l ̸=t

N−1∑
k=−N+1

k ̸=0

|rtl,ϕt(d)(k)|2

s.t. ϕt(d) ∈ {0, π}
(12)

with rtz,ϕt(d)(k) = adkzeȷϕt(d) + cdkz where z stands for
either t or l. The following lemma provides a key result
to tackle above optimization problem.

Lemma I
Let νdkz =

[
|rtz,ϕt(1)(k)|2, |rtz,ϕt(2)(k)|2

]T

∈ R2 with

ϕt(q) = π(q − 1), q = 1, 2 and ζdkz = [adkz, cdkz]T ∈ R2,
then,

νdkz = |DFT(ζdkz)|2, (13)
with DFT(ζdkz) is the two-points DFT of the vector ζdkz

and can be efficiently calculated through FFT. Also, the
square modulus is element wise. �
Proof. The 2-point DFT of ζdkz is,

FL(ζdkz) =
[

adkz + cdkz

adkz − cdkz

]
Next, observe that,

rtz,k(ϕt(d))e−ȷϕt(q) = adkz + cdkze−ȷϕt(q), q = 1, 2.

and ∣∣∣rtz,k(ϕt(d))e−ȷϕt(q)
∣∣∣ = |rtz,k(ϕt(d))| . (14)

Therefore,

|FL(ζdkz)| =
[

|rtz,k (ϕt(1))| , |rtz,k (ϕt(2))|
]T

, (15)

which proofs νdkz = |DFT(ζdkz)|2.
Inspired from Lemma I, we define the matrix Uz ∈

R(2N−1)×2 whose7 k-th row is νT
dkz. Let us

z ∈ R2 be the
vectors containing the summation of each columns of the
matrix Uz. We can write,

ωt(d) = us
t +

NT∑
l=1
l ̸=t

us
l , (16)

where ωt(d) ∈ R2. Then, the solution to Problem (12),
is given by

ϕ⋆
t (d) = π(q⋆ − 1), (17)

where q⋆ = arg min
q=1,2

{
ωt(d)

}
, and the optimal phase code

entry can be computed as x⋆
t (d) = eȷϕ⋆

t (d).
7Notice that, the matrix U t contains all possible auto-correlation

sidelobes (all the values of νdkt are zero when k = 0) of different
lags (i. e., k), whereas all the cross-correlation values for different
possible lags are written in U l.
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IV. Performance Analysis
This section is devoted to the performance analysis of

the proposed algorithm for designing binary sequences
set. In order to evaluate performance of the proposed
method with a normalized measure, we use the definition

ISLR (dB) = 10 log10
ISL
N2 ,

which is the ratio of integrated energy of the sidelobes
to the peak energy of the mainlobe. The “Multi-CAN”
algorithm [2], is adopted as the benchmark since it meets
the Welch lower bound on ISL when designing set of
sequences with constant modulus but arbitrary phases
[12], [24]. Therefore, we consider Multi-CAN(continuous
phase) as the Welch lower bound on ISL and compare
the performance of the proposed algorithm with this
method. Notice that, even-though sets of Gold, Kasami
and M -sequences have ideal periodic auto-correlation
and perfect cross-correlation functions, they don’t have
optimal aperiodic auto- and cross-correlation functions.
Fig. 1 illustrates the convergence behavior of the pro-
posed algorithm initialized by a set of random sequences
and a set of Gold sequences. The code length N = 63 is
adopted since the set of Gold sequences are only available
when N = 2n − 1, n = 1, 2, . . .. The number of iterations
depicted in the figure is based on the outer loop as
described in section III. As expected, the ISLR values
decreases monotonically and converge to a stationary
point, when the iteration increases.
Fig. 2 and Fig. 3 provide a comparison between the
Multi-CAN and proposed algorithm when both algo-
rithms are initialized with sets of random sequences at
lengths N = {8, 16, 24, 32, 40, 48, 56, 64}, with NT = 3, 4.
Indeed, Multi-CAN provides set of continuous phase
sequences, by minimizing an almost equivalent metric of
the ISL (see [2] for more details). As Fig. 2 illustrates, the
proposed algorithm has provided a set of sequences with
the ISL values very close to the set obtained via Multi-
CAN (or the Welch lower bound), but interestingly with a
binary alphabet. The average result over 10 independent
trials are reported for both Multi-CAN and the pro-
posed algorithm in this figure. Meanwhile, the averaged
ISLR values (over 10 independent trials in each sequence
length) of the initialization random set of sequences, are
depicted in the figure. To observe the effectiveness of
the proposed algorithm, we also have plotted the best
set of binary sequences, obtained via quantization of the
Multi-CAN sequences. Of course the quantization cannot
provide a good set of sequences, particularly when the
alphabet size is small. This fact can be proven by the
comparison in Fig. 2, between the ISLR values obtained
via the proposed algorithm and Multi-CAN(Binary) , for
binary set of sequences.
Eventually, Fig. 3 illustrates a comparison between com-
putational time8 of the proposed and Multi-CAN al-

8The computational time is reported using a laptop with a
2.90GHz Intel(R) Core(TM) i7-7600U CPU and 8 GB RAM.
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Fig. 1: Convergence behavior of the proposed algorithm
(N = 63, NT = 4).
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Fig. 2: Comparison between the ISLR values of obtained
sequence sets through proposed and Multi-CAN algo-
rithms.

gorithms, initialized with random set of sequences and
averaged over 10 independent trials. It is known that,
optimization algorithms which sequentially minimize the
objective function (e. g. BCD), are slower than the
methods that update all the variables simultaneously.
However, considering small block sizes (e. g. NT = 3,
N < 64), the computational time of the proposed algo-
rithm is not very higher than Multi-CAN.

V. Conclusion
The performance of MIMO radar systems is strongly

dependent on the waveform characteristics. When em-
ploying distinct binary sequences as waveforms transmit-
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Fig. 3: Computational time of obtained sequence sets
through proposed and Multi-CAN algorithms (NT = 3).

ted from different antennas simultaneously in a MIMO
radar, it is desirable they exhibit impulse-like auto-
correlation functions with small cross-correlation values.
In this paper, we have developed a promising approach
for designing such a set of binary sequences with good
aperiodic auto- and cross-correlation functions. Specifi-
cally, we devised a novel algorithm based on BCD and
FFT, to tackle the non-convex NP-hard optimization
problem. Simulation results have illustrated the effective-
ness of the new algorithm in obtaining binary sequences
with ISL near the Welch lower bound.
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