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Abstract—This paper deals with channel estimation for
Multiple-Input Multiple-Output Orthogonal Frequency Divi-
sion Multiplexing (MIMO-OFDM) wireless communications
systems. Herein, we propose a semi-blind (SB) subspace chan-
nel estimation technique for which an identifiability result
is first established for the subspace based criterion. Our
algorithm adopts the MIMO-OFDM system model without
cyclic prefix and takes advantage of the circulant property of
the channel matrix to achieve lower computational complexity
and to accelerate the algorithm’s convergence by generating a
group of sub vectors from each received OFDM symbol. Then,
through simulations, we show that the proposed method leads
to a significant performance gain as compared to the existing
SB subspace methods as well as to the classical last-squares
channel estimator.

1. Introduction

Channel estimation is of paramount importance to equal-
ization and symbol detection problems in most wireless
communications systems. Many approaches have been de-
veloped and can be classified into two main categories.

The first one concerns blind channel estimation methods
which have been extensively studied and are based on the
statistical or structural properties of the transmitted symbols
(e.g. [1]).

The second one, adopted in most communications stan-
dards [2], relies on the insertion of pilots in the physical
packet according to a given arrangement type (block, comb
or lattice) [3], [4].

Each channel estimation class has its own benefits and
drawbacks. Generally, the second class, i.e. pilot-based
channel estimator provides an easier and more robust chan-
nel estimation than the blind estimation class. However,
it decreases the spectral efficiency and the throughput as
compared to the blind methods. Therefore, it would be
advantageous to retain the benefits of the two techniques
through the use of semi-blind estimation methods [5], [6],
[7] which exploit both data and pilots to achieve the desired
channel identification.

Research work on semi-blind methods can be divided
into two categories. The first category groups works that

aim to improve the performance of the channel estimation
through the joint use of pilots and data symbols. This is
the case, for example, of [8] where the authors used a
subspace approach or [5] which proposes a decomposition
of the channel matrix into a whitening matrix and another
unitary. The second category includes works that focus on
reducing the size of the transmitted pilot signals in order to
improve the throughput gain (see for example [9]). In [10],
the authors exploit the semi-blind approach to reduce the
transmitted power (”green communications”).

This article proposes a semi-blind channel estimation
method based on the subspace decomposition (in signal
subspace and noise subspace) of the covariance matrix of
the received signal. The derivation of subspace methods
depends on the matrix system model. In our case, we use
an appropriate windowing that increases the convergence
rate together with the circular Toeplitz block structure of
the system matrix associated with an OFDM symbol. First,
we establish a subspace identifiability result linked to this
structure before using it for semi-blind channel estimation.
Note that in the literature there exist already several versions
of the subspace method, for example [8], [11] differ from the
one proposed in this paper by incorporating the cyclic prefix
(CP) and virtual carriers (VC) into the system model which
changes the size and structure of the system channel matrix.
The latter methods are efficient only for large sample sizes
and hence a fast alternative approach has been introduced
in [12]. Compared to this last method, our solution does not
rely on the presence of VC and has a lower computational
complexity. Finally, we present simulation results with com-
parative study that assess the performance gain achieved by
the proposed solution.

2. MIMO-OFDM system model

This section presents the MIMO-OFDM wireless system
model illustrated in Fig. 1. It is composed of Nt transmit
antennas and Nr receive antennas. The transmitted signal
is assumed to be an OFDM one, composed of K samples
(sub-carriers) and L Cyclic Prefix samples. The CP length
is assumed to be greater or equal to the maximum multipath
channel delay denoted N (i.e. N ≤ L).
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The received signal y at the Nr receivers of the MIMO-
OFDM system is given by [13] (after CP removal):

y = Hx+ v, (1)

where y =
[
yT
1 · · ·yT

Nr

]T
and x =

[
xT
1 · · ·xT

Nt

]T
. The

noise v =
[
vT
1 · · ·vT

Nr

]T
is assumed to be additive inde-

pendent white Circular Complex Gaussian (CCG) satisfying
E
[
v(k)v(i)

H
]
= σ2

vIKδki; (.)H being the Hermitian op-
erator; σ2

v the noise variance; IK the identity matrix of size
K ×K and δki the Dirac operator. The channel matrix H
is given by:

H =

⎡
⎢⎣

H1,1 · · · H1,Nt

...
. . .

...
HNr,1 · · · HNr,Nt

⎤
⎥⎦ . (2)

Each sub-block Hi,j (with i = 1, · · · , Nr and j =
1, · · · , Nt) of the matrix H is a circulant K ×K Toeplitz
matrix. The first row of the (i, j)-th block contains the prop-
agation channel coefficients between the i-th transmitter and
the j-th receiver hi,j

(
hi,j = [hi,j(0) · · · hi,j(N − 1)]

T
)

,
given by:

[
hi,j(0) 01×(K−N) hi,j(N − 1) · · · hi,j(1)

]
.

The signal xi, sent by the i-th transmitter is an OFDM
signal, modulating the data signal di, using the inverse
Fourier transform IFFT, as follows

xi =
WH

√
K

di, (3)

where W represents the K-point Fourier matrix. Equation
(1), can be rewritten as:

y = HWd+ v = Ad+ v, (4)

where A = HW and W = INt
⊗ W, ⊗ refers to the

Kronecker product. The transmitted data are regrouped in
d =

[
dT
1 · · ·dT

Nt

]T
.

In the sequel the received OFDM symbols are assumed
to be i.i.d and the Np pilots are arranged according to the
block-type scheme followed by Nd data OFDM symbols. To
take into account the time index (ignored in equations (1)
and (4)), we will refer to the t-th OFDM symbol by y(t)
instead of y.

P/S
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Figure 1. MIMO-OFDM system model

3. MIMO channel estimation

This section first reminds the well known Least Squares
estimator, denoted LS, based on the pilot symbols known
at the receiver side. Our subspace blind estimator is then
introduced to ultimately derive the proposed semi-blind
estimation solution. This is formulated by the minimization
of a cost function that incorporates both the pilot and the
blind (data) part.

3.1. Pilot-based channel estimation

In order to derive LS estimator, based on the training
sequences, equation (1) is rewritten as:

y = X̃h+ v, (5)

where h =
[
hT
1 · · ·hT

Nr

]T
is a vector of size NrNtN ×

1 representing the MIMO channel taps (where hr =[
hT
1,r · · ·hT

Nt,r

]T
). X̃ = INr

⊗ X, with X = [X1 · · ·XNt
]

where Xi is a circulant K ×N Toeplitz matrix containing
the elements of xi. Each column is obtained by a simple
down cyclic shift of the previous one with the first column
being the vector xi.

The LS channel estimator ĥLS , using Np pilot OFDM

symbols, X̃p =
[
X̃(1)

T · · · X̃(Np)
T
]T

, is obtained by the
minimization of the following cost function:

C (h) =
∥∥∥ỹp − X̃ph

∥∥∥2, (6)

with ỹp =
[
y(1)T · · ·y(Np)

T
]T

.
Then the LS estimator is given by [14]:

ĥLS =
(
X̃H

p X̃p

)−1

X̃H
p ỹp. (7)

3.2. Subspace based SB channel estimation

In this section, we consider the subspace approach for
the data model given in equation (1). Based on the data
model assumptions, the data covariance matrix is equal to:

Cy = E(yyH) = σ2
xHHH + σ2

vIKNr
(8)

Hence, the signal subspace (principal subspace of Cy) co-
incides with the range space of H while the noise subspace
is its orthogonal complement. These subspaces can be es-
timated from the eigenvalue decomposition (EVD) of Cy

according to:

Cy = UΛUH = [Us |Un ]

[
Λs 0
0 Λn

] [
UH

s

UH
n

]
, (9)

where Cy is estimated using Nd data OFDM symbols as
follows:

Ĉy =
1

Nd

Nd∑
t=1

y(t)y(t)H (10)

Λ is a diagonal matrix containing the eigenvalues in de-
scending order, the matrix Us of size KNr×KNt contains
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the eigenvectors associated with the largest eigenvalues rep-
resenting the signal subspace. The noise subspace Un is
associated with the K (Nr −Nt) smallest eigenvalues, i.e.

[Us |Un ] = [u1 · · · uKNt
|uKNt+1 · · · uKNr

] . (11)

Now, the subspace identification applies only when
the range space of matrix H (range(H)) characterizes
uniquely the channel vector h (up to certain inherent
indeterminacies [15]). For this purpose, we have proved the
following identifiability result:

Lemma: Let H(z) be the Nr × Nt polynomial
filtering matrix which (i, j)-th entry is given by
hi,j(z) =

∑N
k=0 hi,j(k)z

−k. Under the assumption
that H(z) is irreducible (i.e. rank(H(z)) = Nt for
all z), the range space of matrix H characterizes the
channel as follows: For any polynomial matrix H′(z)
of degree N , we have range(H′) = range(H) if and
only if H′(z) = H(z)Q, where Q is a constant Nt × Nt

matrix representing the inherent indeterminacy of the blind
approach [15].

Using the previous lemma, we can blindly identify the
channel vector through the orthogonality relation between
the noise and signal subspaces according to:

uH
i A = 0 i = KNt + 1, · · · ,KNr, (12)

where A is the channel matrix given in equation (4).
Solving this orthogonality relation in the least squares

sense leads to:

C (H) =

KNr∑
i=KNt+1

∥∥uH
i A∥∥2 =

KNr∑
i=KNt+1

∥∥uH
i HW∥∥2.

(13)
By partitioning vector ui of dimension KNr × 1 into

Nr vectors vi
r (r = 1, · · · , Nr) of size K as follows:

ui =
[
vi
1
T · · · vi

Nr

T
]T

, (14)

one can generate the NNr ×K matrix Vi as:

Vi =
[
Vi

1 · · ·Vi
Nr

]T
, (15)

where each matrix Vi
r is circulant of size N×K constructed

from the vector vi
r. Each line is obtained by a simple left

cyclic shift of the previous one with the first line being the
vector vi

r
T . The cost function given by equation (13), can

then be rewritten in the following form:

C (H) =

KNr∑
i=KNt+1

∥∥HTVi
∗W∥∥2 =

KNr∑
i=KNt+1

∥∥HTVi
∗∥∥2,
(16)

where
H =

[
h1 · · · hNt

]
h =

[
hT
1 · · · hT

Nt

]T
hi = [h1,i(0) · · · h1,i(N − 1) · · ·

hNr,i(0) · · · hNr,i(N − 1)]
T
.

(17)

This criterion reduces finally to:

C (h) =
Nt∑
i=1

hT
i Φh∗

i = hT (INt ⊗Φ)h∗

= hH (INt
⊗Φ∗)h,

(18)

where

Φ =

KNr∑
i=KNt+1

Vi
∗Vi

T , (19)

The cost function in the semi-blind subspace case is
composed of two cost functions: the least squares based
on the pilots and the one related to the subspace blind
estimation:

C (h) =
∥∥∥ỹp − X̃pPh

∥∥∥2 + αhH (INt ⊗Φ∗)h, (20)

where α is a weighting factor1 for the subspace method
and P is a permutation matrix such that h = Ph. The
minimization of the latest cost function, leads to the semi-
blind channel estimation as:

ĥ =
(
PHX̃H

p X̃pP+ α (INt ⊗Φ∗)
)−1

PHX̃H ỹp. (21)

The channel estimation performance is strongly related
to the estimation quality of covariance matrix, which is
relatively poor when the number of data OFDM symbols
is small. To alleviate to this and also to reduce the compu-
tational cost (via a reduced size EVD), we introduce next
a windowing technique that helps obtaining ’closed to opti-
mal’ performance with small number of OFDM symbols.

3.3. Fast semi-blind channel estimation

In this part, we propose to subdivide each OFDM symbol
into Ng OFDM subvectors, according to a specific shift
which will be detailed hereafter. Using one received OFDM
symbol y given in equation (1), one can define a set of
sub-vectors y(g) of size NrG × 1 (G < K being a chosen
window size) as follows2

y(g) =
[
y1(g : g +G− 1)T · · ·yNr

(g : g +G− 1)T
]T
(22)

where g = 1, · · · ,K −G+ 1. Then, we group the Ng

(Ng = K − G + 1) vectors into one matrix YG =[
y(1) · · ·y(NG)

]
that is given by:

YG = HGXG +VG, (23)

where the new channel matrix HG (NrG×NtK) is extracted
from the matrix H given in (2) as:

HG =

⎡
⎢⎣

H1,1(1 : G, :) · · · H1,Nt
(1 : G, :)

...
. . .

...
HNr,1(1 : G, :) · · · HNr,Nt(1 : G, :)

⎤
⎥⎦ .

(24)

1. The optimal weighting can be derived as in [16] using a two step
approach.

2. For simplicity, we adopt here some MATLAB notations.
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and the input data matrix is given by XG =[
x(0) · · ·x(NG−1)

]
, where x(g) is obtained from vector x

by applying g up-cyclic shifts. Using equation (3), one can
establish the relation between the i-th transmitted signal xi

(g)
and the data di as:

xi
(g) =

WH

√
K

Dgdi =
WH

√
K

di
(g), (25)

where Dg is (K ×K) diagonal phase matrix given by:

Dg =
1√
(K)

diag{ej2π(g)(0) · · · ej2π(g)(K−1)} (26)

Then, x(g) = Wd(g), where d(g) =
[
(d1

(g))
T · · · (dNt

(g))
T
]T

.
Finally, by concatenating all the data vectors in one NtK×
Ng matrix DG =

[
d(0) · · ·d(NG−1)

]
, equation (23) be-

comes:
YG = HGWDG +VG (27)

The estimation of the correlation matrix is done using
the NdNg vectors (instead of using only Nd vectors), which
leads to fast convergence speed:

ĈG =
1

NdNG

Nd∑
t=1

YG(t)YG(t)
H (28)

As in the previous section, under the condition that
matrix HG is full column rank (and hence GNr > KNt),
one can use the subspace orthogonality relation as in (12)
to estimate the channel vector using the EVD of ĈG.

4. Performance analysis and discussions

In this section, we analyze the performance of the
subspace semi-blind channel estimators in terms of the
normalized Root Mean Square Error (NRMSE) given by
equation (29) for the two subspace methods presented in this
paper i.e. when considering one symbol OFDM and the case
when we split this OFDM symbol into several subvectors.

NRMSE =

√√√√√ 1

NNtNrNmc

Nmc∑
i=1

∥∥∥ĥ(i) − h
∥∥∥2

‖h‖2 , (29)

where Nmc = 500 represents the number of Monte Carlo
realizations. The considered MIMO-OFDM wireless system
is related to the IEEE 802.11n standard [2] composed of two
transmitters (Nt = 2) and three receivers (Nr = 3). The
pilot sequences (or training sequences) correspond to those
specified in the IEEE 802.11n standard, where each pilot is
represented by one OFDM symbol (K = 64 samples) of
power Pxp

= 23 dBm completed by a CP (L = 16 samples)
at its front. The data signal power is Pxd

= 20 dBm. The
channel model is of type B with path delay [0 10 20 30] μs
and an average path gains of [0 -4 -8 -12] dB.

The Signal to Noise Ratio associated with pilots at the
reception is defined as SNR =

‖Hxp‖2

NrNpKσ2
v

.

Fig. 2 presents a comparison between the proposed SB
method, the SB method in [12] (hG=45

SB [12]), the LS method
(hLS) and the SB Cramèr Rao bound CRBSB , detailed
in [13], for Np = 4 and Nd = 150. For the subspace
method, we considered the full-OFDM symbol case3 with
G = K = 64 (hG=64

SB ) and the windowed case with G = 45
(hG=45

SB ). The curves represent the NMSE versus the SNR
for all considered methods. Several observations can be
made out of this experiment: First, both SB methods (the
proposed one and the SB method in [12]) have the same
estimation performance but our algorithm has a reduced
computational cost due to the reduced size of matrix YG as
compared to the one used in [12] and to the circulant matrix
structure which helps reducing the cost of the calculation of
matrix Φ in equation (19). Second, by comparing the cases
G = K = 64 and G = 45, one can see that the windowing is
of high importance to achieve the SB gain for small sample
sizes. Finally, comparing the obtained results with the CRB,
we observe a gap of few dBs with the optimal estimation.

Fig. 3 presents the performance of the SB method with
G = K = 64 and G = 45 versus the number of data OFDM
symbols (Nd). Also, as a benchmark, we compare the results
with the case where the covariance matrix for G = K = 64
is perfectly estimated (hE

SB) and given by equation (10).
One can see that without windowing a large number of
OFDM symbols (more that 300) is needed to achieve the
gain of the SB approach, while the proposed windowing
allows us to converge with about 20 OFDM symbols only.
Another observation is that increasing the window size G
improves the estimation accuracy when a large number of
OFDM symbols is available.

For a given SNR = 10dB, Fig. 4 illustrates the impact
of the size of the partitioned OFDM symbol4 (G) on the
estimation performance for the cases Nd = 40 (small sample
size), Nd = 150 (moderate sample size) and Nd = 300
(large sample size). We notice that the window size choice
has a strong impact on the estimation performance and
for small and moderate sample sizes, an optimal value
of G exists and depends on Nd. For large sample sizes,
the optimal window size is G = K which confirms the
observation made previously in Fig. 3.

5. Conclusion

A new version of the semi-blind subspace method for
channel estimation is proposed in the context of MIMO-
OFDM systems. For that, we have introduced a new blind
subspace estimation method for which an identifiability
result has been established. This SB method exploits the
circulant matrix structure to reduce the computational com-
plexity and an appropriate windowing technique to improve
the estimation accuracy for small or moderate sample sizes.

3. For this case, the method in [12] does not work without the use of
the VC and hence its corresponding plot is not provided.

4. Note that for HG to be tall and full column rank, G belongs to the
range [43, 64].
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