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‡Università degli Studi di Salerno, DIEM, Fisciano, Italy

Abstract—Covariance matrix estimation is a crucial task in
adaptive signal processing applied to several surveillance systems,
including radar and sonar. In this paper we propose a dynamic
environment learning strategy to track both the covariance
matrix and its class; the class represents a set of structured
covariance matrices. We assume that the posterior distribution
of the covariance given the class, is basically a mixture of inverse
Wishart, while the class posterior distribution evolves according
to a Markov chain. The proposed multi-class inverse Wishart
mixture filter is shown to outperform the class-clairvoyant
maximum likelihood estimator in terms of covariance estimate
accuracy, as well as the Bayesian information criterion rule in
terms of classification performance.

Index Terms—Model classification, adaptive filter, covariance
estimation, adaptive signal processing, Bayesian information
criterion, multi-class inverse Wishart mixture filter

I. INTRODUCTION

The estimation of the interference covariance matrix is a

fundamental issue in adaptive signal processing and naturally

arises in several contexts including target detection, direction

of arrival evaluation, secondary data selection, and spectral

analysis. To predict the interference covariance, conventional

adaptive strategies (such as the sample matrix inversion (SMI)

filter [1] and the Kelly’s receiver [2]) rely on the sample

covariance matrix of a secondary data set collected from range

gates spatially close to the one under test. These algorithms

ensure satisfactory performance when secondary vectors exhibit

the same spectral properties of the interference in the cell under

test, are statistically independent of each other, and the size of

the training set is larger than twice the useful signal dimension.

The above requirements represent important limitations, since

the number of data where the disturbance is homogeneous is

usually quite limited and, more importantly, a poor training

data selection can imply severe performance degradation [3].

A possible strategy to circumvent the lack of a sufficient

number of homogeneous secondary data is to exploit a-priori

information on the scene illuminated by the radar and reduce

the unknown parameters at the estimation stage with appropriate

structural models on the covariance matrix [4]–[7].

Adaptive signal processing algorithms based on the mentio-

ned covariance estimators may suffer performance degradation

in the presence of model mismatches, e.g., due to changes in
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the operative conditions arising from meteorological changes

or appearance/disappearance of interferences. A first attempt

to overcome this drawback has been pursued in [8], where an

adaptive classification of the interference covariance matrix

structure is addressed resorting to the theory of model order

selection (MOS) [9]. By doing so, the actual interference

covariance matrix model can be adaptively predicted and

mismatch loss avoided.

In this paper, we still focus on adaptive environment

classification and cognizance. Unlike [8], we jointly exploit

multiple observations (scans) of the scene and a hybrid

covariance matrix-class type of tracking is performed so as to

define a dynamic environment learning strategy. To this end,

as in [10], [11], we resort to Bayesian methods, except that

a sequential approach on multiple observations is taken here.

This work is inspired by [12] for the approximation of posterior

distributions with a mixture, and by [13], [14] for the Inverse

Wishart (IW) modeling of the ellipsoid of the contacts’ spread

around a target’s position in the extended target tracking (ETT)

problem. We propose to track a hybrid state at each time

k, composed by a discrete random variable Ck representing

the class (or model) and a positive definite matrix Rk that is

related via one-to-one mapping to the actual covariance matrix

given the class. Hybrid states are used also when the primary

objective is to track multiple targets, but other parameters, such

as the process noise, need to be estimated. A notable example

is the interactive multiple model (IMM) filter [15], where

usually the process noise switches among discrete predefined

values. More recent developments are documented in [16], [17],

where the approach is applied also to other parameters, such

as the target detection probability. The posterior distribution

of Rk, conditioned on Ck, is approximated by a mixture of

IW distributions, while a posterior distribution on Ck is also

provided representing the probability that the class Ck has

generated the data. The proposed approach is named multi-class

inverse Wishart mixture (MC-IWM) filter, and its derivation is

only sketched out in this paper, leaving a full description to

an extended paper, which is in preparation.

II. PROBLEM FORMULATION

Consider for time k ≥ 1 to sequentially observe the data

Zk = [z1,k, · · · , zN,k]. Let the columns of Zk be N i.i.d. zero-

mean Gaussian random vectors of size m, with positive definite

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 271



covariance matrix Mk. The case of complex data distributed

according to a (zero-mean circularly symmetric) multivariate

Gaussian with positive definite covariance is similar and will

be reported in the extended version of this paper.

Assume that in each time instant k such covariance Mk

belongs to a predefined class, indicated with Ck ∈ C, being

C ≡ {1, 2, . . . , NC}, and depends on a positive definite matrix

Rk; the combination of Rk and Ck uniquely defines the actual

covariance matrix Mk. Note that the dimensionalities of Rk

and Mk could not be the same. For instance, the class of

white noise is given by Mk = Rk Im×m where Rk > 0 is a

one-dimensional variable and Im×m is the identity matrix of

size m.

The goal is to sequentially estimate both the class Ck and

the matrix Rk based on the observed data up to k, denoted by

Z1:k = {Z1,Z2, · · · ,Zk}. The current hybrid state is defined

as Xk = {Rk, Ck}. The estimation is based on the posterior

distribution of Xk given the data observed up to time k

Pk|k (Xk) := P (Xk |Z1:k )

= P (Rk |Ck,Z1:k )P (Ck |Z1:k )

:= Pk|k (Rk |Ck )Pk|k (Ck) , (1)

where we have used the notation Pk|j (Ak) to indicate the

posterior distribution of Ak at time k given the data Z1:j

observed up to time j.

The time evolution of Xk follows a Markov process.

Precisely, the class Ck evolves according to a Markov chain

P (Ck+1 = i |Ck = j ) = πij , i, j ∈ C. (2)

Conditioned on the classes Ck+1, Ck and on Rk, the ma-

trix Rk+1 evolves according to a first order Markov state

transition distribution P (Rk+1 |Ck, Ck+1,Rk ). Note that, if

the two classes are the same Ck+1 = Ck = i, then it

would be reasonable to have a transition with constant mean,

i.e., E [Rk+1 |Ck = i, Ck+1 = i,Rk ] = Rk. Then, inspired

by [13], [14] and considering that we deal with positive definite

matrices, we assume that the spread around the mean is ruled

by a Wishart distribution, yielding

P (Rk+1 |Ck = i, Ck+1 = i,Rk ) = W

(
Rk+1;

Rk

ν
, ν

)
,

(3)

where we have indicated with W (R;A, ν) a Wishart distri-

bution with matrix parameter A and ν degrees of freedom.

Finally, if Ck 6= Ck+1, (3) is still a Wishart distribution, but

with different parameters; the details are omitted for brevity.

III. MULTI-CLASS INVERSE WISHART MIXTURE FILTER

With the assumptions made in the previous section, the co-

variance matrix under each class can be estimated sequentially

by approximating its posterior distributions with mixtures of

IW components. This is similar to the approach taken in [12],

where posterior distributions are approximated by mixtures

of Gaussian components. The choice of IW components

originates from the Gaussian nature of the data Zk and from

the IW distribution being the conjugate prior of Mk, given the

observed data Zk, e.g., see [13], [18]. This property holds also

for Rk in many class definitions of interest. Alternatively,

the moment matching approximation can be exploited to

maintain the IW structure. The proposed approach allows to

sensibly reduce the complexity with respect to a brute force

particle filtering strategy. Indeed, as m increases, but even

for moderately small values, the representation of objects in

R
m×m would require a prohibitively large number of particles.

Let us assume that the predicted posterior for each class at

time k given Z1:k−1 is a mixture of inverse Wishart

Pk|k−1 (Rk |Ck ) =

NW∑

n=1

w
(n,Ck)
k|k−1 IW

(
Rk; R̂

(n,Ck)
k|k−1 , ν̂

(n,Ck)
k|k−1

)
,

(4)

where R̂
(n,Ck)
k|k−1 is the parameter of the inverse Wishart and

ν̂
(n,Ck)
k|k−1 are the related degrees of freedom. The weight w

(n,Ck)
k|k−1

represents the probability of the n-th component of the mixture

at time k for the class Ck after observing the data up to time

k − 1:

w
(n,Ck)
k|k−1 = P(Nk = n |Ck, Z1:k−1 ), (5)

where Nk defines the switching variable among the different

modes. The quantities R̂
(n,Ck)
k|k−1 , ν̂

(n,Ck)
k|k−1 and w

(n,Ck)
k|k−1 summarize

the information acquired by the data up to time k − 1, related

to both Ck and Rk. When the new set of observations Zk is

gathered, the aforementioned quantities are updated as shown

in Algorithm 1. Details on the derivation of Algorithm 1 are

not reported for space reasons.

Assuming to have available the class probability

pk|k−1(c) := Pk|k−1 (Ck = c) at time k given the data

up to k − 1, when Zk is available the class probability is

updated as pk|k(c) := Pk|k (Ck = c) following Algorithm 1.

The prediction step, reported in Algorithm 1, restates the

class probabilities pk+1|k(Ck+1) and the mode probabilities

w
(n,Ck+1)

k+1|k following the Markov chain (2). The IW parameters(
R̂

(n,Ck+1)

k+1|k , ν̂
(n,Ck+1)

k+1|k

)
are updated by marginalizing with

respect to Ck the following distribution

P(Rk+1|Ck+1, Ck,Z1:k)

=

∫
P(Rk+1|Ck+1, Ck,Rk)Pk|k(Rk|Ck)dRk

=

NW∑

n=1

P(n|Ck+1, Ck,Z1:k)

∫
P(Rk+1|Ck+1, Ck,Rk)

× IW(Rk; R̂
(n,Ck)
k|k ; ν̂(n,Ck)) dRk. (6)

Forcing the solution of the integral in the last equality of (6)

to be again an IW and marginalizing (6) with respect to Ck,

we obtain the prediction distribution

Pk+1|k(Rk+1|Ck+1) (7)

=

NW Nc∑

n=1

w
(n,Ck+1)

k+1|k IW(Rk+1; R̂
(n,Ck+1)

k+1|k ; ν̂(n,Ck+1)).

The quantities R̂
(n,Ck+1)

k+1|k and ν̂(n,Ck+1) stem from the moment

matching approximation (used also in [13]) with a further
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transformation that accounts for the different dimensionality

when Ck 6= Ck+1. Such update is expressed by the function

fP (·) in Algorithm 1.

In the prediction step the number of components of the

mixture increases to NW ×NC . To avoid an increase of the

computational complexity, following [12], at each time update

a pruning criterion is adopted. This consists of retaining only

the first NW components, sorted according to their weights.

A. Two-Class Example

A special case is analyzed in this subsection, where only

two classes are possible. The first class is the white noise class

with Mk = Rk Im×m and Rk > 0 while in the second class

Mk = Rk ≻ 0 is a generic m ×m covariance matrix. The

likelihood function is given by

P(Zk|Rk, Ck) =





(2πRk)
−Nm

2 e
−Tr

(

ZkZ
T
k

2Rk

)

Ck = 1,

|2πRk|
−N

2 e
−Tr

(

ZkZ
T
k

R
−1
k

2

)

Ck = 2,

(8)

where |·| and (·)
T

denote the determinant and transpose

operators, respectively. The variables α
(n,Ck)
k , reported in

Algorithm 1, are given as follows

α
(n,Ck)
k =

∫
P (Zk|Ck,R) IW

(
R; R̂

(n,Ck)
k|k−1 , ν̂

(n,Ck)
k|k−1

)
dR.

Specifically, for Ck = 1, 2 we have, respectively

α
(n,1)
k = π

−Nm
2

∣∣∣R̂(n,1)
k|k−1

∣∣∣
ν̂
(n,1)
k|k−1

2 κ1(Nm+ ν̂
(n,1)
k|k−1)

κ1(ν̂
(n,1)
k|k−1)

×
∣∣∣Tr

(
ZkZ

T
k

)
+ R̂

(n,1)
k|k−1

∣∣∣
−

Nm+ν̂
(n,1)
k|k−1
2

, (9)

α
(n,2)
k = π

−Nm
2

∣∣∣R̂(n,2)
k|k−1

∣∣∣
ν̂
(n,2)
k|k−1

2 κm(N + ν̂
(n,2)
k|k−1)

κm(ν̂
(n,2)
k|k−1)

×
∣∣∣ZkZ

T
k + R̂

(n,2)
k|k−1

∣∣∣
−

N+ν̂
(n,2)
k|k−1
2

, (10)

where κp(ν) is defined as

κp(ν) =

p∏

i=1

Γ

[
1

2
(ν + 1− i)

]
. (11)

Furthermore, for any mode n, it follows that the function

fU (·) defined in Algorithm 1 is given by

R̂
(n,Ck)
k|k =





Tr
(
ZkZ

T
k

)
+ R̂

(n,Ck)
k|k−1 Ck = 1,

ZkZ
T
k + R̂

(n,Ck)
k|k−1 Ck = 2.

(12)

ν̂
(n,Ck)
k|k =





Nm+ ν̂
(n,Ck)
k|k−1 Ck = 1,

N + ν̂
(n,Ck)
k|k−1 Ck = 2.

(13)

The specialization of (7) to the two-class example is not

reported for brevity.

Input :Zk = [z1,k, · · · , zN,k], NC , NW

Output :
(
R̂

(n,c)

i|k , ν̂(n,c)
)

, w
(n,c)

i|k , pi|k(c), for i = k, k + 1

Initialization

k ←− 1, pk|k−1(c)←− N−1
C

for c ∈ C do
for n ∈ {1, . . . , NW } do

w
(n,c)

k|k−1 ←− N−1
W(

R̂
(n,c)

k|k−1, ν̂
(n,c)

k|k−1

)
←−

(
R

(n,c)
0 , ν

(n,c)
0

)

end
end
for k ∈ {1, . . . ,K} do

Update
Observe new data Zk

for Ck = c ∈ {1, . . . , NC} do
for n ∈ {1, . . . , NW } do

α
(n,c)
k ←−

∫
P (Zk|Ck = c,Rk = R)

× IW
(
R; R̂

(n,c)

k|k−1, ν̂
(n,c)

k|k−1

)
dR

w
(n,c)

k|k ←−
α
(n,c)
k w

(n,c)

k|k−1
∑NW

n=1 α
(n,c)
k w

(n,c)

k|k−1(
R̂

(n,c)

k|k , ν̂
(n,c)

k|k

)
←−

fU

(
Zk, R̂

(n,c)

k|k−1, ν̂
(n,c)

k|k−1, Ck = c
)

end
pk|k(c)←−(∑NW

n′=1 w
(n′,c)

k|k−1α
(n′,c)
k

)
pk|k−1(c)

∑NC

c′=1

∑NW

n′=1 w
(n′,c′)

k|k−1 α
(n′,c′)
k pk|k−1(c′)

end
Prediction
for Ck+1 = c ∈ {1, . . . , NC} do

n′ ←− 1
pk+1|k(c)←−

∑
c′
πcc′ pk|k(c

′)
for Ck = c̄ ∈ {1, . . . , NC} do

for n ∈ {1, . . . , NW } do

w
(n′,c)

k+1|k ←− w
(n,c̄)

k|k

πcc̄pk|k(c̄)

pk+1|k(c)(
R̂

(n′,c)

k+1|k, ν̂
(n′,c)

k|k

)
←−

fP

(
R̂

(n,c̄)

k|k , ν̂
(n,c̄)

k|k , Ck+1 = c, Ck = c̄
)

n′ ←− n′ + 1
end

end
end
Pruning
for Ck+1 = c ∈ {1, . . . , NC} do

Sort the NW ×NC components according to the

weights {w
(n′,c)

k+1|k}
NW NC

n′=1 retaining the first NW

elements
for n ∈ {1, . . . , NW } do

w
(n,c)

k+1|k ←−
w

(n,c)

k+1|k
∑NW

n′=1 w
(n′,c)

k+1|k

end
end

end

Algorithm 1: Multi-class inverse Wishart mixture filter.
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IV. NUMERICAL RESULTS

In this section we present the results of computer expe-

riments in the two-class case presented in Sec. III-A. The

covariance matrices used to generate the data Zk are defined

as Mk = σ2 Im×m if Ck = 1, and as Mk = R(σ, ρ)
if Ck = 2. In the second class the covariance matrix

component are defined as {R(σ, ρ)}ii = σ2 on the diagonal

and {R(σ, ρ)}ij = {R(σ, ρ)}ji = σ2 ρ|i−j| off the diagonal,

for i, j = 1, . . . ,m. It is worthwhile to remark that the

classification is nested because the first class is a special case

of the second one when ρ = 0; nevertheless, the probability

that Mk is a white covariance matrix under the probability

measure in the second class is zero. Moreover, the structure of

the second class is generic, i.e., the cross-correlation structure

ρ|i−j| is not taken into account in the proposed filter.

Among the several available Bayesian estimators, we select

the posterior mean that is defined as:

M̂k|k = E [Mk|Z1:k]

=
∑

Ck

∫
Mk(Rk, Ck)Pk|k(Ck)Pk|k(Rk|Ck) dRk

=

NC∑

c=1

NW∑

n=1

pk|k(c)w
(n,c)
k|k M̂k|k(n, c), (14)

where M̂k|k(n, c) is the expected mean conditioned to the n-th

mode of the IW mixture and the class c. Recalling that the

mean of an IW distribution IW
(
R; R̂, ν̂

)
of dimensionality

p is R̂/(ν̂ − p− 1), we have

M̂k|k(n, c) =





(
ν̂
(n,1)
k|k − 2

)−1

R̂
(n,1)
k|k Im×m, c = 1,

(
ν̂
(n,2)
k|k −m− 1

)−1

R̂
(n,2)
k|k , c = 2.

(15)

In Figures 1a to 1c we show the Frobenius norm of the mean

error of the posterior mean M̂k|k and the class-clairvoyant ML

estimator, which, at each time scan k, has knowledge of the

true class and computes the sample covariance matrix of the

data Zk. Even if the class-clairvoyant ML is expected to get a

head start from the knowledge of the class, the posterior mean

is able to outperform it taking advantage of the information

contained in the previous steps. Such improvement is not

surprising, as it is present in most Bayesian strategies, e.g., in

the Kalman filter. However, it corroborates the effectiveness

of the IW approximation on the posterior used to derive the

MC-IWM filter. In Figures 1a to 1c a time evolution of 40
steps is reported in which class 2 is in force for the first and

last 10 steps, while class 1 is in force from step 11 to 30. The

simulations are evaluated for three values of ρ = 0.2, 0.5, 0.7
and m = 4, 8, 16 with σ2 = 1. The estimation error is more

affected by m rather than ρ. Indeed, the larger is m, the larger

the estimation error is. This is especially true under class 2, as

one would intuitively expect after an increase of the degrees

of freedom with the same number of observations.

The classification capability, in terms of the posterior

probability pk|k(c), is affected mainly by ρ. For ρ equals to

0.2 the classification capability exhibits poor performance in

correctly detecting class 2, as Figures 1d to 1f show. Even

if this classification performance is poor, it is still better if

compared to the ML. This aspect can be explained considering

that the posterior mean estimator under the wrong class can

be still a good estimator given that the covariance cross-terms

are small if ρ is small. However, increasing ρ up to 0.5 and

0.7 the classification performance improves sensibly, as the

covariance matrices under the two classes become more and

more dissimilar. Finally, in Figures 1g to 1i the detection

capability is compared with that of the BIC rule [9], computed

on Zk, versus the data size N . Specifically, we compare the

averaged posterior class probability, after 10 time steps, with

the BIC under the true classes. The proposed strategy shows a

sensible improvement of the detection capability, especially in

the regime of small values of N and for all the values of ρ
considered in the analysis.

V. CONCLUSION

The dynamic estimation of the environment (covariance

matrix) enables adaptive signal processing strategies to im-

prove performance and robustness in several fields, e.g.,

surveillance, automotive, robotics, etc. A Bayesian approach,

named MC-IWM filter, has been proposed to track both

the covariance class and its unknown parameters. The MC-

IWM filter is computationally efficient, given that it avoids

to use a prohibitively large number of particles that would be

otherwise required by a brute-force particle filtering strategy.

The reported computer experiments show that the MC-IWM

filter outperforms the class-clairvoyant maximum likelihood

estimator in terms of covariance estimate accuracy, as well as

the Bayesian information criterion rule in terms of classification

performance. Future developments of this work will be devoted

to the study of the effects of radar and sonar performance when

the environment is learned using the proposed MC-IWM filter.
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Fig. 1: Panels (a) to (c) show the estimation error over time of the clairvoyant ML (solid lines) and of the posterior mean

(PM) of the MC-IWM filter (dashed lines). Panels (d) to (f) show the classification performance of the MC-IWM filter; red

color refers to class 1, blue to class 2, and the background color identifies the true class over time. Panels (g) to (i) show a

comparison of the classification performance of the proposed approach (dashed lines) with the BIC (dotted lines), versus N .

All the figures are averaged over NMC = 3000 Monte Carlo trials and σ2 = 1.
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