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Abstract—In this study, modeling of façade acoustic insu-
lation is addressed. The objective is predicting the acoustic
behaviour of a virtual façade on an incoming audio signal
based on measurements made on an actual façade and on
Standardized Level Differences (DnT ) curves known for both
of them. In this way, a fast and concise characterization
of acoustic insulation performance from outside noise can
be achieved. The problem is cast as an inverse one, in
which the acoustic impulse response of the actual façade
must be substituted by the virtual one, taking into account,
however, the constraints that are derived from the DnT

analysis. Experimental results are shown to demostrate the
effectiveness of the proposed procedure.

Index Terms—Audio virtualization, Acoustic insulation,
Standardized Level Differences, Convex optimization

I. INTRODUCTION

In system modeling, using direct and indirect measure-
ments to infer the values of hidden or unobservable system
parameters is usually referred to as an inverse problem [1].
Inverse problems arise in several engineering branches,
such as biomedical imaging, optics, meteorology, and also
audio processing. Incidentally, estimation of direction of
arrival, blind source separation or computation of room
impulse response are examples of inverse problems.

In this paper, the application of an inverse problem to
the field of building acoustics is considered. This study
focuses on the approximation of the acoustic insulation
provided by a virtual façade on an audio signal that
has been previously recorded in presence of an actual,
generally different, façade. The problem can be cast as
inverse because, in order to solve it, the contribution
of the actual façade is substituted with the virtual one,
relying uniquely on the knowledge of the Standardized
Level Difference (DnT) [2]. DnT curves are indirect and
differential measurements of sound pressure level (SPL)
carried out over prescribed frequency bands. They are
extensively adopted in building acoustics for a fast and
concise characterization of the acoustic insulation per-
formance of a façade from outside noise. Nevertheless,
to the best of authors’ knowledge, this is the first work
where they are used for the purpose of synthesis instead
of analysis.

In the application considered here, the classical mag-
nitude filter design cannot be used because of integral
constraints on the magnitude of the frequency response
that need to be enforced. Thus, a solution based on convex
optimization [3] is explored. Magnitude filter design by
convex optimization has been already investigated in the
literature, considering approaches relying on linear pro-
gramming [4], semidefinite programming [5], [6], linear
matrix inequalities [7] and directed iterative rank refine-
ment [8]. Unfortunately, such methods cannot be directly
applied in the context of this study due to the particular
modeling of the problem. Nevertheless, ideas proposed
in those works have been exploited to approximate our
problem and to solve it by standard convex optimization
routines.

The remainder of the paper is structured as follows.
The formal modeling of the problem is presented Sec-
tion II. The proposed method is described in Section III.
Experimental results are shown in Section IV, whereas
conclusions are drawn in Section V.

II. PROBLEM MODELING

In this Section, the model of the considered scenario is
introduced and the goal is formalized.

Accordingly to Figure 1, the acoustic signal x′ gener-
ated by a source located outside a building is recorded by a
microphone placed inside it, providing the audio signal ya.
The whole system is assumed linear and time–invariant;
hence, the input-output relation is given by the following
discrete linear convolution:

ya[n] = x′[n] ∗ g[n] ∗ ha[n]

= x[n] ∗ ha[n], (1)

where ha is the impulse response of the filter modeling the
actual façade and g is the filter accounting for the remain-
ing acoustic effects (e.g. free-space loss, reverberation). In
other words, the signal x indicates the recorded acoustic
signal after the contribution of ha were removed.

By assuming that the actual façade were replaced by the
virtual one, the virtual signal yv that would be recorded is

yv[n] = x[n] ∗ hv[n], (2)
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being hv the impulse response of the filter modeling the
virtual façade. Substituting (1) into (2), the virtual signal
is theoretically provided by

yv[n] = ya[n] ∗ h−1
a [n] ∗ hv[n] , (3)

that is, the target signal can be obtained by inverse and
direct filtering the recorded signal by means of the actual
and virtual façade filters, respectively. It has to be noted
that {ha, hv} generally depend upon several parameters,
e.g., the position and the directivity of both the source and
receiver, the façade’s and building’s geometry and mate-
rials; thus, aggregate parameters like DnT are commonly
preferred for the analysis and the comparison of façades’
insulating performance.

There exists a standard procedure to evaluate the DnT
curves of façades [2], which can be qualitatively ap-
proximated as an average of multiple SPL measurements
carried out across several positions inside and outside the
building. Therefore, an accurate theoretical model that
relates all the measurements to the DnT curves is of
difficult formalization and beyond the scope of this work.

In this paper, a simplified modeling is used. The DnT
curve is considered as evaluated through a single measure-
ment, according to the setup depicted in Figure 2. The DnT

value in the frequency band ∆m, shortly D(a)
m , is computed

as the ratio between the energies of the signals recorded
by two distinct microphones suitably placed outside and
inside the actual façade, respectively, in the presence of
an external pink noise source. The power spectral density
of the pink noise is assumed to be σ/F , where σ is
a constant. By neglecting other sources of disturbance,
D

(a)
n can be approximated as the ratio of integrated power

spectral densities, i.e.

D(a)
m ≈

∫
∆m

σF−1 dF∫
∆m

σF−1|Ha(F )|2 dF

=

∫
∆m

F−1 dF∫
∆m

F−1|Ha(F )|2 dF
m = 1, . . .M , (4)

where Ha is the Fourier transform of ha; m = 1, . . .M
indexes the set of frequency bands which the DnT values
are computed over. An analogous procedure is performed
to obtain the DnT curve of the virtual façade, namely D(v)

m ,
over the same bands.

DnT curves do not cover the entire range [0, Fs], being
Fs the sampling frequency [2]; hence, M complementary

Fig. 1: Schematic view of the recording scenario.

bands ∆m are introduced, that is,

∆m ∩
M⋃
p=1

∆p = ∅ m = 1, . . . ,M

such that
M⋃

m=1

∆m ∪
M⋃

m=1

∆m ≡ [0, Fs] .

By considering (3) and (4), the goal is formally defined
as follows: synthesize

ŷv[n] = ya[n] ∗ ĥ−1
a [n] ∗ ĥv[n]. (5)

where the estimated filters {ĥa, ĥv} are constrained by∫
∆m

F−1|Ĥa(F )|2 dF =

∫
∆m

F−1 dF

D
(a)
m

, m = 1, . . .M

(6)∫
∆m

F−1|Ĥv(F )|2 dF =

∫
∆m

F−1 dF

D
(v)
m

, m = 1, . . .M

(7)

Ĥa(F ) = Ĥv(F ), ∀F ∈
M⋃

m=1

∆m (8)

∠Ĥa(F ) = ∠Ĥv(F ), ∀F ∈ [0, Fs] . (9)

The above equations represent a non–convex set of inte-
gral, semi–infinite and phase constraints. Equations (6)–(7)
come from (4) and enforce the similarity to the measured
data; (8) ensures that the synthesized signal adheres to
the recorded one for all the frequencies, even where no
information is available; (9) prevents phase distortions
between ŷv and yv . In case of ideal estimation, i.e.,
ĥa = ha and ĥv = hv , (5) and (3) consistently coincide.

III. PROPOSED METHOD

The proposed procedure is iterative: at each iteration
a convex optimization problem and a spectral factor-
ization have to be solved; the termination condition is
achieved when the estimated filters sufficiently adhere to
the acquired data. The algorithm, which is summarized in
Algorithm 1, is described in the following.

The autocorrelation sequence of the actual façade, r̂a,
and the related power spectral density R̂a are defined,
respectively, as

r̂a[n] = ĥa[n] ∗ ĥa[−n] (10)

Fig. 2: Schematic view of the measurement setup of DnT
curves.
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R̂a(F ) = |Ĥa(F )|2 (11)

= r̂a[0] + 2
N−1∑
n=1

r̂a[n] cos(2πFn) (12)

where N is the filter length, with N odd. Analogously, r̂v
and R̂v are defined for the virtual façade. Moreover, the
following quantities are introduced:

Ln(F ) =

{
1 for n = 0

2 cos(2πFn) otherwise
(13)

Cn,m =
D

(a)
m

∫
∆m

F−1Ln(F ) dF∫
∆m

F−1 dF
, (14)

as well as the tolerances ε0 and α0 (ε0 > 1, α0 > 0).
Equation (8) is relaxed into R̂a = R̂v . According to the
previous definitions, (6)–(8) are approximated with the
following finite set of convex constraints:

1

ε
≤
dN/4e−1∑

n=0

r̂a[n]Cn,m ≤ ε, m = 1, . . .M (15)

1

ε
≤
dN/4e−1∑

n=0

r̂v[n]Cn,m ≤ ε, m = 1, . . .M (16)

1

ε
≤
∑dN/4e−1

n=0 r̂v[n]Ln(Fi)∑dN/4e−1
n=0 r̂a[n]Ln(Fi)

≤ ε,

Fi ∈
M⋃

m=1

∆m, i = 1, . . . Pm (17)

α0 ≤
dN/4e−1∑

n=0

r̂a[n]Ln(Fj), Fj ∈ [0, Fs], j = 1, . . . Q

(18)

α0 ≤
dN/4e−1∑

n=0

r̂v[n]Ln(Fj), Fj ∈ [0, Fs], j = 1, . . . Q ,

(19)

where Fi and Fj are frequencies over the complementary
bands and over the entire spectrum, respectively, and
ε = ε0 at the first iteration. Inequalities (15)–(16) are de-
rived from (6)–(7) by substituting (11)–(13), respectively,
and introducing the tolerance bounds. Similarly, (17) is
the discrete–frequency version1 of (8), having replaced
the filters’ frequency responses with their power spectral
densities. Inequalities (18)–(19) enforce the positiveness
of the power spectral densities [4], [5].

The goal of our method would be achieving a smooth
R̂v/R̂a, constrained by relations (15)–(19). This could be
obtained by minimizing the energy of the derivative of
R̂v/R̂a, but this leads to a nonconvex problem. Therefore,
we resort to a different approach aiming to smooth both the
numerator and the denominator of the above ratio. Thus,
a weighted sum of the energy of the derivatives of such
terms is considered. Applying the Parseval’s theorem, it
can be shown that the goal can be formalized as a convex
problem with respect to {r̂a, r̂v}, given by

minimize
dN/4e−1∑

n=0

n2

(
r̂a[n]

Wa
+
r̂v[n]

Wv

)2

1The convexity is implicit for sake of brevity.

subject to (15)–(19) , (20)

where

Wa =
M−1∑
m=1

∣∣∣∣∣
∫

∆m+1
F−1 dF

D
(a)
m+1

−
∫

∆m
F−1 dF

D
(a)
m

∣∣∣∣∣
Wv =

M−1∑
m=1

∣∣∣∣∣
∫

∆m+1
F−1 dF

D
(v)
m+1

−
∫

∆m
F−1 dF

D
(v)
m

∣∣∣∣∣ .
It has to be noted that in (15)–(20), the autocorrelation se-
quence is truncated at dN/4e−1 to limit the computational
burden of the convex optimization procedure. Furthermore,
the problem (20) might generally result unfeasible for
the given N ; in such a case, it is iteratively solved by
increasing N until a valid solution is achieved.

After solving (20), the phase constraint (9) has to be
enforced. Equation (9) is strengthened by assuming

∠Ĥa(F ) = ∠Ĥv(F ) = 0, ∀F , (21)

i.e., zero–phase filters, which implies that there exist two
causal sequences {b̂a, b̂v} of length dN/2e such that

ĥa[n] = b̂a[n] ∗ b̂a[−n]

ĥv[n] = b̂v[n] ∗ b̂v[−n] .
(22)

Substituting (22) into (10) and recursively into (11), after
taking the logarithm, yields

4 ln |B̂a(F )| = ln R̂a(F )

4 ln |B̂v(F )| = ln R̂v(F ) .
(23)

Replacing (23) in the approximation of real cepstrum [9],
i.e.

b̃[n] = IFFT{ln |B̂(F )|} ,

where IFFT{·} is the Inverse Fast Fourier Transform, the
real cepstra of (b̂a, b̂v) are approximated by

b̃a[n] = IFFT{ln |R̂a(F )/4|}
b̃v[n] = IFFT{ln |R̂v(F )/4|} .

(24)

Therefore, {ĥa, ĥv} are computed by means of the follow-
ing spectral factorization: after computing the real cepstra
{b̃a, b̃v} through (24), {b̂a, b̂v} are synthesized by means
of minimum phase reconstruction [4], [10]2

b̂a[n] = Re IFFT{exp(FFT{b̃a[n]w[n]})}
b̂v[n] = Re IFFT{exp(FFT{b̃v[n]w[n]})} ,

(25)

being

w[n] =


0 , for n < 0

1 , for n = 0

2 , otherwise ,

and {ĥa, ĥv} are eventually computed according to (22).
The solution obtained after the first iteration may not

fulfill the integral constraints due to the approximation
introduced by the spectral factorization [4]. Thus, the

2The procedure proposed in [11] can be used as alternative.
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whole procedure is iterated by decreasing ε, until the
following inequalities are satisfied:

1

ε0
≤

N−1∑
n=0

r̂a[n]Cn,m ≤ ε0, m = 1, . . .M

1

ε0
≤

N−1∑
n=0

r̂v[n]Cn,m ≤ ε0, m = 1, . . .M .

(26)

Algorithm 1 Procedure of the proposed method

Input: N odd, ε0 > 1, α0 > 0, ya, {D(a)
m , D

(v)
m } for

m = 1, . . .M
Output: ŷv , {ĥa, ĥv}

1: ε← ε0
2: repeat
3: while (20) is unfeasible do
4: increase N
5: end while
6: compute {r̂a, r̂v} by solving (20)
7: compute real cepstra {b̃a, b̃v} by means of (24)
8: compute {b̂a, b̂v} through (25)
9: compute {ĥa, ĥv} by means of (22)

10: decrease ε
11: until (26) is satisfied
12: compute ŷv by means of (5)

IV. RESULTS

The proposed method has been tested by selecting
one low–performance façade as the actual one, whose
DnT has been directly measured. Four façades have been
chosen as the virtual ones. The DnT curves of virtual
façades have been determined according to [12] starting
from sound insulation measurements of high performance
fixtures carried out in laboratory [13]. All curves have
been accordingly reported over one–third octave bands,
as depicted in Figure 3, where their nominal central
frequencies are reported. The lowest and the highest one–
third bands have nominal central frequency equal to 50
and 3150 Hz, respectively; the total number of bands is
M = 19. A pair of complementary bands (M = 2) are set
between 0 and 44 Hz (i.e. the lower bound of the lowest
band) and between 3563 Hz (i.e. the upper bound of the
highest band) and 4000 Hz. The sampling frequency is
Fs = 8000 Hz. As to the tolerances, ε0 and α0 are set to
0.1 dB and −110 dB, respectively.

In order to provide a homogeneous distribution, the
number of sampling points Pm for each complementary
band is set to

Pm =
30N |∆m|

Fs
,

being |∆m| the bandwidth of ∆m, whereas Q is set to
30N .

The filters {ĥa,ĥv} for all the considered scenarios have
been successfully synthesized by using a filter length N =
2047. For the convex optimization, the CVX [14], [15],
a package for specifying and solving convex programs,
and the MOSEK solver have been used in the MATLAB
environment. The magnitude of the frequency response of
the synthesized filters, as well as of the equivalent filter
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Fig. 3: DnT curves of the actual and virtual façades.

Hv/Ha, are reported in Figure 4. The synthesized filters
exhibit a smooth profile in the one–third octave bands,
especially in the lower part of the spectrum, providing
a regular behavior across different scales. The equivalent
filter provides a 0 dB response in the complementary bands
thanks to the fact that Ha ans Hv nearly coincide in
such frequency regions. Furthermore, the ripple of Ha is
conveniently limited in the third–octave bands, avoiding
the outbreak of resonance peaks in the frequency response
of the equivalent filters.

V. CONCLUSIONS

A novel method for the virtualization of the façade’s
effect on an audio signal has been presented. The proposed
procedure relies on a simplified signal model that, by
only requiring the knowledge of the Standardized Level
Difference curves, replaces the acoustic effect provided
by an actual façade on a recorded signal with the acoustic
effect of a virtual façade. The filters modeling the façades’
effects are estimated by means of convex optimization
and spectral factorization techniques in order to satisfy
the measured data. The procedure has been also shown
to successfully manage the presence of no–information
bands, which is a common scenario in measured insulation
curves, by synthesizing a flat passband response in such
regions. Furthermore, the lack of phase information is
dealt with by resorting on zero–phase direct and inverse
filtering, providing no phase distortion in the output signal.
The validation of the proposed algorithm with signals
acquired in presence of the virtual façades will be possibly
investigated in future works.
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