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Abstract—Sparse Blind Source Separation (sparse BSS) is a
key method to analyze multichannel data in fields ranging from
medical imaging to astrophysics. However, since it relies on
seeking the solution of a non-convex penalized matrix factorization
problem, its performances largely depend on the optimization
strategy. In this context, Proximal Alternating Linearized Mini-
mization (PALM) has become a standard algorithm which, de-
spite its theoretical grounding, generally provides poor practical
separation results. In this work, we first investigate the origins
of these limitations, which are shown to take their roots in
the sensitivity to both the initialization and the regularization
parameter choice. As an alternative, we propose a novel strategy
that combines a heuristic approach with PALM. We show its
relevance on realistic astrophysical data.

I. INTRODUCTION

A. Blind Source Separation problem

In the BSS [1] framework, the data are composed of m
observations, each of which has t samples. These observations
are supposed to be some linear combinations of n sources.
The objective of BSS is to retrieve the sources as well as
the mixing coefficients. In matrix form, the goal is therefore
to find two matrices S (of size n × t) and A (of size
m×n), called respectively the source and the mixing matrices,
such that: X = AS + N, where X (of size m × t) is the
observation matrix that is corrupted with some unkwown
noise N. Since it requires tackling an ill-posed unsupervised
matrix factorization problem, further assumptions are needed,
including the statistical independance of the sources (ICA -
[1]), the non-negativity of A and S [2]. In this work, we will
focus on the sparsity of the sources [3]–[6]. In this framework,
sparse BSS will aim at finding a (local) minimum of:

min
A,S

1

2
‖X−AS‖2F + ι{∀i;‖Ai‖22≤1}(A) +

∥∥∥RS � (SΦT
S )

∥∥∥
1

(1)

The first data fidelity term promotes a faithful reconstruction
of the data. The use of the Frobenius norm ‖.‖F stems
from the assumption of a Gaussian noise N. The second
term involving the characteristic function ι corresponds to the
oblique constraint ensuring that the columns Aiof A are all
in the `2 ball. This avoids degenerated A and S matrices
where ‖A‖ → ∞ and ‖S‖ → 0. The last term involving
the Hadamard product � enforces a `1 sparsity constraint
in a transformed domain ΦS. In the following, ΦS will be
taken equal to either the identity (in which case the sparsity is

enforced in the direct domain) or the starlet transform [7]. RS

controls the trade-off between the data fidelity and the sparsity
terms. It can be decomposed into RS = ΛSW where ΛS is a
diagonal matrix of the regularization parameters λ1, λ2, ..., λn
and W is a matrix used to introduce individual penalization
coefficients in the context of reweighted `1 [8] (when no
reweighting is used, W is equal to the identity matrix).

B. Sparse BSS in practice

Since sparse BSS requires solving a penalized matrix factor-
ization problem, it is important to highlight that the separation
quality strongly depends on the optimization strategy. For
that purpose, different algorithmic frameworks have been used
so far: projected Alternate Least-Square (ALS - [2]), Block-
Coordinate Descent (BCD - [9]) and PALM [10]. However,
any practitioner can draw the same conclusion: the solution of
sparse BSS methods is highly sensitive to the initial point
and the values of the regularization parameters, which are
generally tricky to tune without any first guess of the solution.

Initialization: As problem (1) is not convex but multi-
convex, the algorithm performing its minimization can be
trapped in spurious critical points, depending on the initial
matrices A and S. Different optimization strategies can be
affected differently.

Regularization parameters: The practical choice of the
regularization parameters ΛS is of paramount significance:
• The parameters are directly impacting the shape of the

solution through the trade-off between the sparsity level
and fidelity to the data.

• The problem being non-convex, a change in the pa-
rameters can also bring the optimization algorithm to
stabilize in the neighborhood of a different critical point,
potentially leading to a very different solution.

C. Contributions

While PALM is theoretically well rooted and yields rather
fast minimization schemes (in contrast to BCD), it gener-
ally provides poor separation results. We first investigate the
origins of this poor practical efficiency, and especially the
sensitivity to both initialization and regularization parameter
settings. We further show how PALM-based implementations
can benefit from the information provided by heuristic ap-
proaches which are in pratice more robust. The robustness of
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the proposed combined strategy is demonstrated on realistic
astrophysical data.

II. OPTIMIZATION STRATEGY: PALM AND GMCA

As emphasized before, the optimization strategy is decisive
to avoid stationary points. In the following, we will discuss
PALM [10] and projected ALS such as Generalized Morpho-
logical Component Analysis (GMCA - [3]). BCD will not
be studied since it requires an exact minimization at each
iteration, leading in general to a high computational cost.

A. PALM algorithm

PALM has been introduced in [10] and has benefited from
several extensions [11], [12]. Its attractiveness partially comes
from the fact that it is proved to converge to a local minimum
of (1) under mild conditions [10].
PALM is an iterative algorithm. At each iteration, it alternates
between a proximal gradient step on A and S. In our case, it
can be shown that the proximal operator corresponding to the
`1 sparsity term in (1) is the soft-thresholding operator (with
for each source Sλ(.) = sign(.) � [|.| − λ]+) applied in the
transform domain. Furthermore, the operator corresponding
to the oblique constraint is the projection of each column of
A on the `2 unit ball, which we shall denote as Π‖.‖2(.).
Each iteration (k) can then be read as:

1 - Update of S using a fixed A:

Ŝ = S(k−1)− γ

‖A(k−1)TA(k−1)‖2
A(k−1)T (A(k−1)S(k−1)−X)

(2)
S(k) = S γRS

‖A(k−1)TA(k−1)‖
2

(
ŜΦT

S

)
ΦS (3)

2 - Update of A using a fixed S:

Â = A(k−1) − δ

‖S(k)S(k)T ‖2
(A(k−1)S(k) −X)S(k)T

(4)
A(k) = Π‖.‖2

(
Â
)

(5)

B. GMCA algorithm

GMCA algorithm is based on projected ALS. At each
iteration (k), the gradient step of (2) and (4) is replaced by
a multiplication by a pseudo-inverse:
1 - S is updated assuming a fixed A.

Ŝ = A(k−1)†X (6)

Where A(k−1)† is the pseudo-inverse of A(k−1).

S(k) = SRS
(ŜΦT

S )ΦS (7)

2 - A is updated assuming a fixed S:

Â = XS(k)† (8)

A(k) = Π‖.‖2(Â) (9)

Compared to PALM, GMCA is only a proxy for the minimiza-
tion of (1) and cannot be proved to converge (while stabilizing

in most of practical cases after some iterations). However,
thanks to heuristics, it benefits from an automatic thresholding
strategy (see Sec.IV-A1) which has been empirically shown to
improve its robustness with respect to the initialization.

III. PALM-BASED SPARSE BSS IN PRACTICE

The objective of this section is to empirically shed light on
the lack of robustness of PALM to motivate the need of finding
a relevant strategy to enable its use on practical problems. The
first subsection presents our experimental protocol, while the
second and third ones focus on the sensibility of PALM with
respect to the regularization parameters and the initialization.

A. Experimental protocol

To bring out PALM sensibility and the mechanisms at stake,
our experiments focus in this subsection on simple data com-
ing from n = 2 equilibrated (with equal `2 norm) sources. The
sources are assumed to be exactly sparse in the direct domain,
a proportion p = 0.1 of the t = 500 samples being non-
zeros and drawn according to a standard normal distribution.
The mixing is performed through a A matrix drawn randomly
following a standard normal distribution and modified to have
unit columns. Its condition number is Cd = 10. There are
m = n observations. To complete the creation of the X data,
a Gaussian additive noise is added to the mixing, such that
the Signal to Noise Ratio is SNR = 60 dB.
Once the algorithm launched, it stops based on a conver-
gence criterion computed through the angular distance of
the columns of A between two successive iterations. The
separation quality is then mesured using a global criterion on
A [13]: CA = −10 log10(median(|PA†A∗| − Id)), with A∗

the true mixing matrix and PA† the pseudo-inverse of the
solution found by the algorithm corrected through P for the
scale and permutation indeterminacies. The higher CA, the
better the separation.
To study PALM robustness, we perform an exhaustive search
for the parameters, testing many different values. The feasabil-
ity of this approach is due to both the fact that we work on
simulated data, for which we know the true A and S, and the
low number of sources, asking for only two parameters. Such
an approach would be intractable on practical cases.

B. Sensibility to the thresholding strategy

Following our experimental protocol, we obtain Figure 1, on
which CA is displayed as a function of the threshold of each
of the 2 sources ((λ1, λ2) are part of RS and therefore impact
PALM through Eq. 3). On this figure, the lack of robustness
and sensibility to the parameter choice is underlined by the
following remarks:
• High quality separation happens for values close to the

diagonal. A slight deviation from it can cause a 30 dB
drop for a 3 × 10−4 modification of one parameter and
lead to a very bad separation. One could argue that this
problem could be circumvented by imposing λ1 = λ2.
First, it has to be emphasized that the maximum is not
on the diagonal but slightly outside, for λ1 = 3.81×10−3
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Fig. 1. Mean of CA as a 2D function of the thresholds for 5 different
initializations of PALM algorithm.

Fig. 2. Standard deviation of CA as a 2D function of the thresholds for 5
different initializations of PALM algorithm.

and λ2 = 3.88×10−3. Merely setting λ1 = λ2 = 3.81×
10−3 yields a loss of more than 10 dB. Second, in this
simple toy example, the sources are equilibrated. It would
not necessarily be the case with real-life sources, which
could lead to a shift of the diagonal;

• Inside of the diagonal itself, a 2×10−3 change of λ1 = λ2
can lead to a loss of about 7 dB.

C. Sensibility to the initialization

As described in section I-B, the initialization impacts the
results due to the non-convex nature of problem (1) because
the algorithm can stay trapped in spurious critical points.
The standard deviation of CA over different initializations of
A is plotted in Fig. 2 to quantify this impact. It can reach
up to 5 dB for some regularization parameters choices. The
best parameter setting corresponds to a quite high standard
deviation and can shift depending on the initialization. It
makes the practical choice of an initialization a critical point
which directly impact the quality of the local minimum found
by the algorithm.
It further highlights the sensitivity to the values of the regular-
ization parameters. A key question is thus how to tune PALM

in practice and if it can be done in an automatic way without
prior knowledge about the solution.

IV. COMPLEXITY OF INTRODUCING HEURISTICS IN PALM

A. Heuristic motivation and description

Building on the automatic thresholding strategy of GMCA,
the goal of this part is to try to derive one for PALM.

1) Automatic parameter choice in GMCA: In GMCA, the
thresholding is directly performed on a minimizer of an
approximation of the data fidelity term. Said differently, it is
performed in an approximation of the source space. This has
lead to a simple interpretation of the parameters, allowing for
an heuristic thresholding strategy that yields good practical
results and robustness. The true sources being sparse, the
thresholding should remove a dense signal, partially coming
from the back-projection in the source space of the data
noise N. In practice, this dense signal removal is performed
computing the Median Absolute Deviation (MAD) for each
source and setting the corresponding threshold to a multiple
k of this value:

(λ1, λ2, ..., λn)T = k × MAD(Ŝ) (10)

In this equation and in the remaining of this section, ΦT
S was

supposed to be the identity matrix without loss of generality. k
is a positive number and the MAD operator is computed row-by-
row with MAD(z) = median(|z − median(z)|) for z ∈ Rt. If
we suppose that GMCA has found the true A matrix denoted
by A∗, it can be shown that:

k × MAD(Ŝ) ' k × MAD
(
A∗†N

)
(11)

It has however to be emphasized that this data noise removal
interpretation of the thresholding is limited to the case when
the estimation of the mixing matrix is close to A∗. In the
opposite case, the imperfect demixing results in an increase of
the thresholds due to an extra noise coming from interferences
between the sources.

2) Heuristic in PALM: Let us assume that the thresholds
in PALM are computed the same way as in GMCA through
eq. (10), and that the algorithm has converged to both the true
matrices A∗ and S∗. Then:

(λ1, λ2, ..., λn)T = k × MAD

(
S∗ − γ

‖A∗TA∗‖2
A∗T (A∗S∗ −X)

)
' k × γ

‖A∗TA∗‖2
MAD(A∗TN)

(12)

where the last line is obtained thanks to the assumption of S∗

sparsity. Therefore, using the MAD enables a thresholding of a
projection of the noise N, which yields a similar interpretation
as in GMCA. This observation must however be tempered:
• It only holds when and if PALM has converged towards

good A and S;
• The projection is not performed in the same space as

GMCA, for which the noise is back-projected in the
source space. Both spaces however merge when A is
orthogonal.
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B. Experimental protocol

The mixing and the metric on the separation quality are
the same as in Sec. III-A. The automatic parameter setting
described in the previous subsection is used inside of a PALM
algorithm for different k values. k is the same for both sources,
since the MAD is supposed to be adaptive enough to the noise.

C. Empirical performances of the heuristic

The results are displayed in Fig 3. The low values of
CA, reaching at most 6dB, are to be compared with the 39
dB obtained during the exhaustive parameter search in III-A.
While efficient in GMCA, the MAD heuristic leads to a bad
separation quality due to the different space in which the
thresholding is performed (cf. IV-A2), yielding a different role
to the thresholds. To better understand this role, let us assume
that the algorithm is initialized with the true mixing matrix
A∗ only (and not with S∗, contrary to what is described in
IV-A2). In PALM, the use of the transpose A∗T in eq. (2) leads
towards a re-mixing of the sources at each iteration whose goal
is to gradually decrease the data fidelity term. This re-mixing
however increases the sparsity term and should be impeded
by the thresholds, giving to them a demixing role.
On the opposite, when using GMCA, such a re-mixing be-
tween the sources does not exist due to the use of the pseudo-
inverse A∗† instead of A∗T , which alleviate somehow the
issue of finding relevant thresholds. Therefore, using the MAD
heuristic in PALM does not results in good separations in
practice, because the interpretation in terms of noise removal
is less relevant than in GMCA.

V. COMBINING GMCA AND PALM: A HYBRID STRATEGY

In this part, we propose to combine the best of GMCA and
PALM in a two step approach. The algorithm consists in a
warm-up stage, in which GMCA is performed, followed by a
refinement stage during which PALM is performed retaining
as much information as possible coming from the warm-up
stage.

A. Motivation and full description of the algorithm

Our approach is motivated by several remarks:
• PALM theoretical background: while GMCA is only a

proxy, the 2-step algorithm will attempt to solve exactly
eq. (1) as PALM does. It further benefit from the high
potential accuracy of PALM. Moreover, PALM is proved
to converge under mild assumptions [10], so is the 2-step
algorithm.

• GMCA robustness with regards to initialization: we pro-
pose to re-use GMCA outputs AGMCA and SGMCA as
an initialization of PALM. Due to the almost constant
results of GMCA when confronted to different initializa-
tions, the quality of the output of PALM in the refinement
stage will have a much decreased variance.

• Benefit from GMCA solution: the results of GMCA can
be re-used by PALM in the refinement stage as a first
guess about the shape of the solution. It is done through
two mechanisms:

Fig. 3. Mean and quartiles of CA for 10 different initializations of 3 different
algorithms : PALM, GMCA and 2 steps.

– Since both AGMCA and SGMCA are close to A∗

and S∗, they can be used to derive the thresholds
using the MAD. It has however to be emphasized
that after a given number of iterations the thresholds
become fixed, which is a necessary condition to
ensure convergence.

– Furthermore, SGMCA should already give a good
approximation of the most prominent peaks. This
information can be exploited in the refinement stage
through the introduction of reweighted L1 [8] using
the reweighting matrix W in problem (1). In brief,
the thresholds are lowered for the biggest samples of
the estimated sources, reducing the bias introduced
by soft-thresholding. This is particularly appealing
in PALM because the biases in these coefficients
behave as errors that are transmitted to the other
sources through the remixing introduced by AT .

These remarks lead to the following algorithm using a smart
initialization and thresholding strategy:

Input : X (data matrix)
• Random initialization A0 and S0

• Warm-up stage:
AGMCA, SGMCA = GMCA(X,A0,S0)

• Refinement stage:
APALM, SPALM = PALM(X,AGMCA,SGMCA)
The initialization, thresholding strategy and
reweighting information come from the warm-up
stage.

B. Empirical results

The experimental protocol is the same as described in Sec.
IV-B except that the 2-step algorithm is used instead of PALM.
The results are plotted in Fig. 3. With values of CA higher than
33 dB, the demixing is close to the best ones obtained with
the exhaustive search in Sec. III. Compared to PALM only, the
variance of results over different initializations is also much
decreased, becoming almost zero, which shows the robustness
of the algorithm with regards to the initialization.
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Fig. 4. Up: true sources. Down: sources estimated by the two step algorithm.

10 dB 15dB 20 dB
2 step 11.57 16.92 22.09
PALM 9.38 10.94 11.01
GMCA 8.87 12.15 15.87
EFICA -6.92 5.11 9.41
RNA -6.68 -5.49 6.27

TABLE I
AVERAGE CA (10 DIFFERENT INITIALIZATIONS) FOR 3 SNR VALUES AND

5 ALGORITHMS. THE BEST VALUES ARE IN BOLD.

VI. EXPERIMENT ON REALISTIC DATA

The goal of this part is to apply our algorithm to realistic
data to show its efficiency.

A. Data description and experimental protocol

The n = 2 sources come from simulations obtained from
real data of Cassiopeia A supernova remnant. These data
originate from the Chandra X-ray observatory. The sources in
these wavelength values correspond to the thermal emission
and the iron. As displayed in Fig. 4, they each consists in a
2D image of resolution t = 128 × 128 pixels, supposed to be
approximately sparse in the starlet domain. The mixing matrix
is simulated as described in III-A. To increase the realism of
the data and further test the algorithm, we tried three relatively
low SNR values: 10, 15 and 20 dB.
The sparsity is enforced in the starlet domain. k is set to

3, which corresponds to a standard hypothesis in terms of
Gaussian noise removal.

B. Empirical results

The mean of CA values is displayed in Fig. I. To visually
assess the separation quality, the estimation for a SNR of 15
dB is shown in Fig. 4. The 2-step approach always achieve
better results than the two classical BSS algorithms with
which we performed the comparison, namely Relative Newton
Algorithm (RNA) and Efficient FastICA (EFICA). It also
outerpeforms both GMCA and PALM, being always better
by at least 2 dB than the best of them. The bigger differences
with GMCA than in Fig. 3 are probably explained by the fact

that the approximation made by GMCA is less well verified
due to both a higher noise level and less sparse sources.
In addition to the results displayed in Fig. (I), the standard
deviation of CA over different initializations is almost 0, which
shows the robustness of the algorithm.

CONCLUSION

In this work, we show that the ability of recent and theoret-
ically grounded optimization strategies like PALM to provide
solutions to sparse BSS problems is highly sensitive to both the
initialization and the values of the regularization parameters.
To further design an effective as well as robust algorithm,
we introduce a 2-step strategy combining PALM with robust
heuristic methods such as GMCA. Beyond improving the
robustness of PALM-based implementations with respect to
initialization, the regularization parameters can be automati-
cally set in the proposed approach. Numerical experiments on
both simulated and realistic data demonstrate a high separation
quality and good robustness on mixings with low SNR.
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