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Abstract—A new approach for estimating multichannel AR
(M-AR) models from noisy observations is proposed. It relies on
the so-called Frisch scheme, whose rationale consists in finding
the solution of the identification problem within a locus of
solutions compatible with the second order statistics of the noisy
data. Once that the locus of solutions has been defined, it is
necessary to introduce a suitable selection criterion in order to
identify a single solution. The criterion proposed in the paper is
based on the comparison of the theoretical statistical properties
of the residual of the noisy M-AR model with those computed
from the data. The results obtained by means of Monte Carlo
simulations show that the proposed algorithm outperforms some
existing methods.

I. INTRODUCTION

The identification of autoregressive (AR) models finds

many applications, for instance, in spectral estimation [1],

[2], speech analysis [3]–[5], biomedical signal processing [6],

[7], structural health monitoring [8], radar signal processing

[9]–[11], model-of-signal based fault detection [12]. These

applications refer to both scalar AR models and multichannel

AR models.

As is well known, when the AR process is corrupted

by additive noise classical identification methods like least

squares and Yule-Walker equations lead to biased estimates

[13], [14]. Since this is a very common situation, many

approaches have been proposed for identifying AR models

in the presence of additive noise. Among them, the high-order

Yule-Walker equations [1], [15], the prediction error method

[16], the bias-compensated least squares [14], [17], the errors-

in-variables approach [5], [18], [19].

With reference to the identification of multichannel AR (M-

AR) models in the presence of additive noise one of the first

published papers is [20], that extends to the multivariate case

the high-order Yule-Walker equations. A Newton-Raphson

algorithm is proposed in [21], where a set of nonlinear and a

set of linear equations are solved iteratively. In [22], the bias-

compensated least squares approach of [14] is extended to

M-AR models. The model parameters and the noise variances

are estimated in an iterative manner. The errors-in-variables

method described in [23] exploits, on the one hand, some

properties of the Frisch scheme and, on the other hand, a set of

low-order and high-order Yule-Walker equations. In particular,

the Frisch scheme is used to find an estimate of the noise

variances that can, in turn, be used “to compensate” the effect

of noise in the Yule-Walker equations. In [24], the authors

suggest using two mutually interactive Kalman fiters. The first

filter computes an estimate of the noise-free AR signal starting

from the estimate of the AR parameters while the second

filter updates the AR parameters starting from the estimated

signal. A variant of the algorithm introduced in [22] has been

suggested in [25]. Recently, a steepest descent method has

been described in [26]. It combines Yule-Walker equations and

inverse filtering to iteratively estimate the M-AR parameters

and the noise variances.

In this paper, the M-AR model is considered as an errors-

in-variables models and it is shown how the so-called Frisch

scheme [27] can be fully exploited to identify both the AR

parameters and the driving noise and additive noise covariance

matrices. The rationale behind the Frisch scheme consists in

finding the solution of the identification problem within a locus

of solutions compatible with the second order statistics of the

noisy data. In the specific case, it is first shown that the m
channels of the multivariable AR models can be associated

with m locus of solutions described by hypersurfaces belong-

ing to the positive orthant of Rm+1. Then, it is shown how

to define a locus of solutions for the whole M-AR model by

associating models with directions in R2m. In particular, a

direction ρ belonging to the first orthant of R2m leads to a set

of M-AR parameters and noise variances. To estimate a single

model among the set of possible solutions, it is necessary to

define a suitable selection criterion. The criterion proposed

in the paper is based on the comparison of the theoretical

statistical properties of the residual of the noisy M-AR model

with those computed from the data and the estimated model.

It is worth highlighting that the proposed estimation method is

quite different with respect to that described in [23], although

both are related to the Frisch scheme. Indeed, the Frisch

scheme properties are exploited in [23] only to identify the

noise variances while the AR coefficients are estimated by

using the Yule-Walker equations.

The remainder of the paper is organized as follows. Section

II defines the identification problem. Section III describes

some asymptotic properties of the M-AR process while Sec-

tion IV shows how to exploit the Frisch scheme for M-AR

models. The performance of the method is evaluated by means

of Monte Carlo simulations and compared with those of [23]

and [26]. The obtained results are shown in Section V.
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II. PROBLEM STATEMENT

Consider the m-dimensional multichannel AR process de-

scribed by the equation

x(t) +A1 x(t− 1) + · · ·+Ap x(t− p) = e(t) (1)

where the AR signal x(t) and the driving noise e(t) are the

vectors
x(t) = [x1(t)x2(t) . . . xm(t) ]T (2)

e(t) = [ e1(t) e2(t) . . . em(t) ]T , (3)

and A1, A2, . . . , Ap are m×m parameter matrices. The output

of the AR process is corrupted by additive noise, hence the

available measurements are given by

y(t) = x(t) + w(t), (4)

where
y(t) = [ y1(t) y2(t) . . . ym(t) ]T (5)

w(t) = [w1(t)w2(t) . . . wm(t) ]T . (6)

We introduce the following assumptions.

A1. The roots of the determinant of A(z−1) lie inside the unit

circle where

A(z−1) = Im +A1 z
−1 + · · ·+Ap z

−p. (7)

z−1 is the backward shift operator (z−1 x(t) = x(t− 1))
whereas Im denotes the m×m identity matrix.

A2. The driving noise e(t) and the additive noise w(t) are

mutually uncorrelated zero–mean white processes with

unknown diagonal covariance matrices Σ∗
e and Σ∗

w

E[ e(t)eT (t− τ) ] = Σ∗
e δ(τ) (8)

E[w(t)wT (t− τ) ] = Σ∗
w δ(τ) (9)

E[ e(t)wT (t− τ) ] = 0, ∀τ (10)

where δ(τ) denotes the Kronecker delta function and

Σ∗
e = diag [σ2∗

e1 , σ
2∗
e2 , . . . , σ

2∗
em ], (11)

Σ∗
w = diag [σ2∗

w1, σ
2∗
w2, . . . , σ

2∗
wm ]. (12)

A3. The order p is assumed as known.

The problem to be solved can be stated as follows.

Problem 1. Let y(1), y(2), . . . , y(N) be a set of noisy mea-

surements generated by model (1), (4) under Assumptions

A1-A3. Determine an estimate of the parameter matrices

A1, . . . , Ap and of the covariance matrices Σ∗
e , Σ∗

w.

III. ASYMPTOTIC PROPERTIES OF THE M-AR PROCESS

The multichannel AR process (1) can also be represented

by the set of m equations

xi(t) +
m∑
j=1

p∑
k=1

aijk xj(t− k) = ei(t), i = 1, . . . ,m. (13)

By comparing (1) to (13) it follows that

Ai =

⎡
⎢⎢⎢⎣
a11i a12i · · · a1mi

a21i a22i · · · a2mi

...
...

...

am1i am2i · · · ammi

⎤
⎥⎥⎥⎦ , i = 1, . . . , p. (14)

Model (1) can thus be seen as a set of m interconnected multi-

input single-output subsystems. In fact, the output xi(t) of

the i-th subsystem depends not only on its past p samples

xi(t − 1), . . . , xi(t − p) but also on the past p samples of

x1(t), . . . , xi−1(t), xi+1(t), . . . , xm(t), that play the role of

inputs.

Let us consider the generic i-th subsystem of the M-AR

model, described by the i-th equations in (13) and (4):

xi(t) +
m∑
j=1

p∑
k=1

aijk xj(t− k) = ei(t) (15)

yi(t) = xi(t) + wi(t). (16)

By defining the vectors

ϕx
i (t) = [x1(t− 1) . . . x1(t− p) . . . xi(t)xi(t− 1) . . .

. . . xi(t− p) . . . xm(t− 1) . . . xm(t− p) ]T (17)

ϕe
i (t) = [ 0 . . . 0︸ ︷︷ ︸

(i−1)p

ei(t) 0 . . . 0︸ ︷︷ ︸
(m−i+1)p

]T (18)

and the parameter vector

θ∗i =
[
ai11 . . . ai1p ai21 . . . ai2p · · ·
1 aii1 · · · aiip · · · aim1 · · · aimp

]T
, (19)

equation (15) can be rewritten as

(ϕx
i (t)− ϕe

i (t))
T
θ∗i = 0. (20)

By introducing also the vectors

ϕy
i (t) = [ y1(t− 1) . . . y1(t− p) . . . yi(t) yi(t− 1) . . .

. . . yi(t− p) . . . ym(t− 1) . . . ym(t− p) ]T (21)

ϕw
i (t) = [w1(t− 1) . . . w1(t− p) . . . wi(t)wi(t− 1) . . .

. . . wi(t− p) . . . wm(t− 1) . . . wm(t− p) ]T , (22)

and using (16), it follows easily that

ϕy
i (t) = ϕx

i (t) + ϕw
i (t). (23)

Consider now the covariance matrices

Rx
i = E [ϕx

i (t)ϕ
xT
i (t)] (24)

Ry
i = E [ϕy

i (t)ϕ
yT
i (t)] (25)

R̄i = E
[(
ϕx
i (t)− ϕe

i (t)
)(
ϕx
i (t)− ϕe

i (t)
)T ]

, (26)

where E[·] denotes the expectation operator. From (23) and

Assumption A2 we get

Ry
i = Rx

i + E [ϕw
i (t)ϕ

wT
i (t)]

= Rx
i + diag

[
σ2∗
w1Ip, . . . , σ

2∗
wiIp+1, . . . , σ

2∗
wmIp

]
. (27)

Since E[xi(t) ei(t)] = σ2∗
ei we also have

R̄i = Rx
i − diag

[
0 . . . 0︸ ︷︷ ︸
(i−1)p

σ2∗
e 0 . . . 0︸ ︷︷ ︸

(m−i+1)p

]
, (28)

therefore

Ry
i = R̄i + R̃∗

i , (29)
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where R̃∗
i is the diagonal matrix

R̃∗
i = diag

[
σ2∗
w1Ip, . . . , , σ

2∗
w(i−1)Ip, σ

2∗
ei + σ2∗

wi,

σ2∗
wiIp, σ

2∗
w(i+1)Ip . . . , σ2∗

wmIp
]
. (30)

From (20) and (26) it follows that

R̄i θ
∗
i = 0, (31)

hence, because of (29)(
Ry

i − R̃∗
i

)
θ∗i = 0. (32)

The autocorrelation matrix of the noisy output Ry
i can thus be

decomposed into a sum of a positive semidefinite matrix R̄i

and a diagonal matrix R̃∗
i . Note that if R̃∗

i were known the

true parameter vector θ∗i could be determined from any basis

of the null space of R̄i by normalizing the appropriate entry

to 1, see (19). However, as the driving noise variance σ2∗
ei and

the additive noise variances σ2∗
w1, σ

2∗
w2, . . . , σ

2∗
wm are unknown,

Eq. (32) cannot be directly used to find an estimate of the

parameter vector θ∗i .

The idea behind the Frisch scheme consists in finding the

true noise variances σ2∗
ei , σ

2∗
w1, σ

2∗
w2, . . . , σ

2∗
wm within a locus

of solutions leading to a decomposition of the autocorrelation

matrix Ry
i like the one in (29). This locus will be described

in the next section.

IV. THE FRISCH SCHEME FOR M-AR MODELS

Consider now the problem of determining the set of points

P = (σ2
ei, σ

2
w1, σ

2
w2, . . . , σ

2
wm) belonging to the positive

orthant of Rm+1 that lead to diagonal matrices

R̃i(P ) = diag
[
σ2
w1 Ip, . . . , , σ

2
w(i−1) Ip, σ

2
ei + σ2

wi,

σ2
wi Ip, σ

2
w(i+1) Ip . . . , σ2

wm Ip
]

(33)

such that

Ry
i − R̃i(P ) ≥ 0, det(Ry

i − R̃i(P )
)
= 0. (34)

Every point P of this set can thus be associated to a parameter

vector θi(P ) that can be obtained by normalizing to 1 the

appropriate entry of any basis of the null space of Ry
i −R̃i(P ):(

Ry
i − R̃i(P )

)
θi(P ) = 0 (35)

where

θi(P ) =
[
ai11(P ) . . . ai1p(P ) ai21(P ) . . . ai2p(P ) · · ·

1 aii1(P ) · · · aiip(P ) · · · aim1(P ) · · · aimp(P )
]T

. (36)

It is possible to prove the following theorem.

Theorem 1: The set of points P = (σ2
ei, σ

2
w1, σ

2
w2, . . . , σ

2
wm)

satisfying (34) defines an hypersurface S(Ry
i ) belonging to the

positive orthant of Rm+1 (the noise space). Every point P of

S(Ry
i ) defines a set of m+1 noise variances (the driving noise

variance σ2
ei and the additive noise variances σ2

w1, . . . , σ
2
wm)

and can be associated with a vector of parameters θi(P ) (36)

satisfying relation (35). The point P ∗
i = (σ2∗

ei , σ
2∗
w1, . . . σ

2∗
wm)

defined by the true noise variances belongs to S(Ry
i ) and is

associated with the true parameter vector (19), i.e. θi(P
∗
i ) =

θ∗i .

The proof of Theorem 1 is omitted here due to space limi-

tations. It could be proved by following similar reasoning as

used for the proof of Theorem 1 in [28], although the problem

under investigation is different.

A useful way to parameterize the hypersurface S(Ry
i ) is

based on the following result, whose proof is similar to that

of Theorem 3 in [28].

Theorem 2: Let ξ = (η, ξ1, ξ2, . . . , ξm) be a generic point

of the positive orthant of Rm+1 and ρ the straight line from

the origin through ξ. Its intersection with S(Ry
i ) is the point

Pi given by

Pi =
ξ

λMi
, λMi = max eig

(
(Ry

i )
−1 R̃ξ

i

)
(37)

where

R̃ξ
i = diag

[
ξ1 Ip, . . . , , ξi−1 Ip, η + ξi,

ξi Ip, ξi+1 Ip, . . . , ξm Ip
]
. (38)

Section III and Theorem 1 refer to the generic i–th sub-

system, so that the whole M-AR model is described by m
hypersurfaces S(Ry

1),S(Ry
2), . . . , S(Ry

m), associated with the

autocorrelation matrices Ry
1 , R

y
2 , . . . , R

y
m of the noisy outputs

y1(t), y2(t), . . . , ym(t). It is worth noting that the points

P ∗
1 , P

∗
2 , . . . , P

∗
m have the common entries σ2∗

w1, σ
2∗
w2, . . . , σ

2∗
wm

since P ∗
i = (σ2∗

ei , σ
2∗
w1, . . . σ

2∗
wm) for i = 1, 2, . . . ,m. A

parameterization of the whole M-AR model can be determined

by exploiting Theorem 2, as it will be shown in the following.

Consider a straight line ρ passing through the origin and

belonging to the positive orthant of R2m. This line can

be represented by a point Pρ = (η1, . . . , ηm, ξ1, . . . , ξm)
whose entries are the coordinates of the unit vector in the

direction of ρ. Starting from ρ it is possible to define the m
directions ρ1, ρ2, . . . , ρm in Rm+1 which are represented by

the points Pρ1, Pρ2, . . . , Pρm where Pρi = (ηi, ξ1, . . . , ξm).
The direction ρi is associated to the i–th subsystem. It is

then possible to consider the intersections of ρ1, ρ2, . . . , ρm
with the hypersurfaces S(Ry

1),S(Ry
2), . . . , S(Ry

m), by using

Theorem 2. Let these intersections be given by the points

P1(ρ), P2(ρ), . . . , Pm(ρ) where

Pi(ρ) = (σ2
ei, σ

2
w1i, σ

2
w2i, . . . , σ

2
wmi), i = 1, . . . ,m. (39)

From Theorem 1, the point Pi(ρ) can be associated with a

parameter vector θi(Pi(ρ)). According to these considerations,

it is possible to associate a direction ρ in R2m with the M-AR

model

M(ρ) � {θ1(P1(ρ)), θ2(P2(ρ)), . . . , θm(Pm(ρ))}. (40)

It is worth noting that the point P ∗ = (σ2∗
e1 , . . . , σ

2∗
em,

σ2∗
w1, . . . σ

2∗
wm) whose coordinates are the true driving noise

and additive noise variances defines the “true” direction ρ∗

and then the true directions ρ∗1, ρ
∗
2, . . . , ρ

∗
m. It follows from

Theorem 1 that Pi(ρ
∗
i ) = P ∗

i , i = 1, . . . ,m. As a conse-

quence, ρ∗ is associated with the true M-AR model M(ρ∗) =
{θ1(P ∗

1 ), θ2(P
∗
2 ), . . . , θm(P ∗

m)} = {θ∗1 , θ∗2 , . . . , θ∗m}.
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Remark 1: From the model M(ρ) it is easy to obtain a

model like (1) by taking into account (14) so that (40) can be

rewritten as

M(ρ) = {A1(ρ), A2(ρ), . . . , Ap(ρ)}. (41)

Remark 2: Note that the generic direction ρ and then

the model M(ρ) are associated with a set of driving noise

variances σ2
e1, σ

2
e2, . . . , σ

2
em, see (39). On the contrary, the

additive noise variances are not univocally defined as, from

(39), we have m different values for each σ2
wj , j = 1, . . . ,m.

To define a unique set of additive noise variances we

will consider the arithmetic means of the values given by

P1(ρ), P2(ρ), . . . , Pm(ρ):

σ̄2
wi =

1

m

m∑
j=1

σwij , i = 1, . . . ,m. (42)

In this context, the identification problem (Problem1) consists

in finding the true direction ρ∗ in order to retrieve the true

model M(ρ∗). The search for ρ∗ in the positive orthant of

R2m can be performed by means of the selection criterion

described in the next subsection, that is based on the statistical

properties of the residual of the noisy M-AR model.

A. A selection criterion

The multivariable AR model (1) can be rewritten in the

polynomial form

A(z−1)x(t) = e(t) (43)

where A(z−1) is the matrix polynomial (7). By inserting (4)

in (43) we get

A(z−1) y(t) = A(z−1)w(t) + e(t). (44)

Define the m-dimensional stochastic process

ε(t) = A(z−1) y(t) = A(z−1)w(t) + e(t), (45)

that can be considered as the residual of the noisy AR model

(1), (4). Because of Assumption A2, ε(t) is the sum of

a moving average process and a white noise so that it is

characterized by a finite number of autocorrelations Rε(τ) =
E
[
ε(t) εT (t− τ)

]
:

Rε(0) =

p∑
i=0

Ai Σ
∗
w AT

i +Σ∗
e (46)

Rε(τ) =

p−τ∑
i=0

Ai+τ Σ
∗
w AT

i , τ = 1, . . . , p (47)

Rε(τ) = 0, τ > p, (48)

where A0 = Im. The properties of the autocorrelation function

(46)–(48) can be exploited to define a suitable selection

criterion for identifying the true model M(ρ∗).
To this end, let us consider a generic direction ρ in R2m,

the associated model M(ρ) (41) and the associated driving

noise and additive noise variances (see Remark 2). By using

the parameters and the noise variances of (41) it is possible

to compute the estimates R̂ε(0, ρ), R̂ε(1, ρ), . . . , R̂ε(p, ρ) as

in (46)–(48). On the other hand, by using the available data

y(1), y(2), . . . , y(N) and the parameters of (41) it is possible

to compute first a sequence of residuals

ε̂(t) = Â(z−1, ρ) y(t), (49)

where

A(z−1, ρ) = Im +A1(ρ) z
−1 + · · ·+Ap(ρ) z

−p (50)

and then the sample estimates R̂N
ε (0, ρ), R̂N

ε (1, ρ), . . . ,

R̂N
ε (p, ρ) given by

R̂N
ε (τ, ρ) =

1

N − τ

N∑
t=τ+1

ε̂(t) ε̂T (t− τ), τ = 0, . . . , p.

(51)

The proposed selection criterion consists in comparing the

theoretical statistical properties of ε(t) with those computed

from the data. To this end, define the vectors

r̂ε(ρ) =
[
vec

(
R̂ε(0, ρ)

)T
vec

(
R̂ε(1, ρ)

)T · · ·
· · · vec

(
R̂ε(p, ρ)

)T ]T
(52)

r̂Nε (ρ) =
[
vec

(
R̂N

ε (0, ρ)
)T

vec
(
R̂N

ε (1, ρ)
)T · · ·

· · · vec
(
R̂N

ε (p, ρ)
)T ]T

(53)

and the loss function

f(ρ) = ‖r̂ε(ρ)− r̂Nε (ρ)‖22. (54)

The estimation of ρ∗ and of the associated model M(ρ∗) can

thus be performed by minimizing f(ρ) in the positive orthant

of R2m:

ρ̂ = argmin
ρ∈R2m

f(ρ). (55)

V. SIMULATION RESULTS

The performance of the proposed Frisch scheme-based

identification approach has been evaluated by means of Monte

Carlo simulation and compared with those of the following

approaches:

– the errors-in-variables (EIV) approach described in [23].

In particular, Algorithm 2 in [23] has been considered;

– the improved least-squares algorithm based on inverse

filtering (IFILSM) introduced in [26].

It is worth noting that the above mentioned methods outper-

forms other existing methods like, for instance, [21], [22], [25],

as shown in [23], [26].

Let the available data be generated by the two-channel AR

model of order p = 2

x(t) +A1 x(t− 1) +A2 x(t− 2) = e(t) (56)

y(t) = x(t) + w(t), (57)
where

A1 =

[−0.71 0.32
−0.88 −0.24

]
A2 =

[
0.57 −0.15
−0.49 −0.30

]
. (58)
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TABLE I
TRUE AND ESTIMATED VALUES OF THE COEFFICIENTS OF A1, A2 AND OF THE NOISE VARIANCES σ2∗

e1 , σ2∗
e2 , σ2∗

w1 , σ2∗
w2 .

a111 a112 a211 a221 σ2∗
e1 σ̃2∗

e2

true −0.71 0.32 −0.88 −0.24 1 1

Frisch −0.6985± 0.0548 0.3332± 0.1305 −0.8716± 0.0951 −0.2283± 0.1088 1.0343± 0.1622 1.0718± 0.5278

EIV [23] −0.7057± 0.0363 0.3628± 0.1952 −0.8792± 0.0847 −0.2313± 0.1253 0.5086± 0.3441 0.9078± 0.4246

IFILSM [26] −0.6894± 0.4802 0.4929± 1.6020 −0.8547± 0.6528 −0.6558± 2.8465 1.0219± 0.9118 1.0354± 9.3821

a211 a212 a221 a222 σ̃2∗
w1 σ̃2∗

w2

true 0.57 −0.15 −0.49 −0.30 2.1 2.7

Frisch 0.5522± 0.1239 −0.1521± 0.1098 −0.5045± 0.1103 −0.3009± 0.1176 2.0774± 0.1123 2.6243± 0.4023

EIV [23] 0.5273± 0.1878 −0.1789± 0.1498 −0.5018± 0.1234 −0.3064± 0.1275 2.0858± 0.0898 2.6952± 0.3706

IFILSM [26] 0.4579± 2.1403 −0.2671± 0.9396 0.0445± 3.7279 0.0445± 2.2497 1.9925± 0.3666 1.6349± 3.7507

This model was also used in [21], [23], [24]. The driving

processes e1(t), e2(t) are white noise with unit variance so that

Σ∗
e = I2. The additive noise variances are set to σ2∗

w1 = 2.1,

σ2∗
w1 = 2.7. This leads to a signal to noise ratio of 5 dB on

both channels. A Monte Carlo simulation of 200 independent

runs has been carried out by considering N = 4000 available

samples in each run. The results are summarized in Table I

that reports the true values of AR parameters, driving noise

and measurement noise variances as well as their estimated

means and standard deviations obtained in the simulation. We

can note that the performance of the IFILSM method is quite

bad with respect to those of Frisch and EIV. The best accuracy

is achieved by the proposed Frisch scheme-based identification

method for both the AR coefficients and the noise variances.
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