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Abstract—This paper aims at providing a fresh look at semi-
parametric estimation theory and, in particular, at the Semi-
parametric Cramér-Rao Bound (SCRB). Semiparametric models
are characterized by a finite-dimensional parameter vector of
interest and by an infinite-dimensional nuisance function that is
often related to an unspecified functional form of the density of
the noise underlying the observations. We summarize the main
motivations and the intuitive concepts about semiparametric
models. Then we provide a new look at the classical estimation
theory based on a geometrical Hilbert space-based approach.
Finally, the semiparametric version of the Cramér-Rao Bound for
the estimation of the finite-dimensional vector of the parameters
of interest is provided.

I. INTRODUCTION

Any scientific experiment which aims to gain some knowl-
edge about a real-word phenomenon starts with the data
collection that will be later used to infer information. In
statistical Signal Processing (SP) applications, all the available
knowledge about the observed phenomenon is summarized
in the probability distribution of the collected data. More
formally, let x1, . . . ,xM be M measurements collected from
a random experiment, then P0(x1, . . . ,xM ) is their (joint)
“true” distribution that will be the basic ingredient of any
inference method and, in particular of point estimation. In an
estimation problem, in fact, we are interested in the evaluation
of some functional of P0(x1, . . . ,xM ), say ν(P0). The mean
value, the median, the covariance of the data are only some
simple examples of ν(P0). Clearly, any inference problem
implies, as a first step, the estimation or, at least a reasonable
guess, of the true data distribution P0(x1, . . . ,xM ) or of the
relevant probability density function (pdf) p0(x1, . . . ,xM ).
To this end, we have to define a family of distributions (or
pdfs) that are able to statistically characterize the collected
observations. The set of possible distributions for a given
random experiment is called model. According to the available
amount of a-priori knowledge, two different classes of models
can be exploited for data analysis and statistical inference: the
parametric and the non-parametric models.

A parametric model Pθ is defined as a set of pdfs for the
acquired dataset x1, . . . ,xM that are parametrized by a finite-
dimensional parameter vector θ ∈ Θ ⊆ Rd:

Pθ , {pX(x1, . . . ,xM |θ),θ ∈ Θ} . (1)

Clearly, if a parametric model is adopted, the knowledge
about the real-word phenomenon of interest is summarized
in the (finite-dimensional) parameter vector θ. In particular,
if the true data pdf p0(x1, . . . ,xM ) belongs to Pθ, this
implies that there exists θ0 ∈ Θ such that p0(x1, . . . ,xM ) =
pX(x1, . . . ,xM |θ0) and then the model is said to be correctly
specified. In a parametric model, every pdf is completely
characterized by a finite number of parameters, i.e. the d
entries of the vector θ, and this makes the subsequent inference
procedure relatively simple even when only a small number
of measurements is available. However, in some practical
applications, and in particular when our a-priori knowledge
about the experiment at hand is limited, a parametric model
could result to be too restrictive and we could run the risk that
the true data pdf p0(x1, . . . ,xM ) falls outside the assumed
model Pθ. If this happens, the parametric model is said
to be misspecified ([1], [2]). In order to avoid the model
misspecification (that, of course will lead to some performance
degradation of the inference procedure), one can decide to
characterize the statistical behavior of the collected data using
a more general non-parametric model.

A non-parametric model is a collection of pdfs that possibly
satisfy some functional constraints, i.e. symmetry around their
mean value, and can be indicated as:

Pp , {pX(x1, . . . ,xM ) ∈ K} , (2)

where K is some constrained set of pdfs. Of course, using
a non-parametric model, the risk of model misspecification
is minimized since Pp is able to embrace a wider range
of pdfs. On the other hand, the “expanse” of Pp could
represent a big issue. In fact, to obtain an estimate of the true
data pdf, we have to face an infinite-dimensional estimation
problem. This could represent a prohibitive task in practical
applications where the number of available data is limited and
it usually results to be too small to estimate the full “shape”
of p0(x1, . . . ,xM ).

The concept of semiparametric models has been introduced
to be a compromise between the “parsimony” of parametric
models and the “realism” of the non-parametric ones [3].
A semiparametric model is a set of pdfs characterized by a
finite-dimensional parameter θ ∈ Θ along with some infinite-
dimensional parameter l ∈ L, where L is some set of
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functions:

Pθ,l , {pX(x1, . . . ,xM |θ, l),θ ∈ Θ, l ∈ L} . (3)

In many practical applications involving semiparametric mod-
els, the parameters of interest are the ones collected in (a sub-
vector of) the finite-dimensional vector θ, while the infinite-
dimensional parameter l can be considered as a nuisance
parameter, i.e. a parameter that interferes with the inference
process but whose estimation is not required. Classical esti-
mation theory has been fully developed in the case in which
both the parameters of interest and the nuisance parameters
can be collected in a finite dimensional vector (see e.g. [4],
Sect. 10.7). In particular, we can easily derive a Cramér-Rao
inequality for the covariance matrix of any unbiased estimator
in the presence of finite-dimensional nuisance parameters. The
issue we address in this paper is the following: is it possible
to generalize the classical theories in order to take an infinite-
dimensional nuisance function into account?

A huge amount of practical inference problems can be
described using a semiparametric formalism (see [3], [5],
[6] and references therein), but its potential has not been
fully exploited by the SP community as yet. To the best
of our knowledge, there are only few attempts to use a
semiparametric approach in SP applications. Two examples
are the works [7] and [8], where a semiparametric approach
has been applied to blind source separation and to nonlinear
regression, respectively. Our aim here, is to provide a fresh
look at semiparametric estimation and at the SCRB, that can
be exploited by a wide audience of SP practitioners.

The rest of the paper is organized as follows. In Sect. II,
we show that one of the most widely used non-Gaussian
model, i.e. the class of Real Elliptically Symmetric (RES)
distributions ([9], [10]), is semiparametric in nature. In Sect.
III, we discuss a geometrical reinterpretation of classical
estimation theory and, in particular, of the CRB in the presence
of a finite-dimensional nuisance vector. In Sect. IV, previously
introduced geometrical tools will be used to generalize the
parametric CRB to the semiparametric framework. Finally,
a discussion on some open problems and on possible future
research directions is provided in Sect. V.

II. A SEMIPARAMETRIC MODEL: THE RES DISTRIBUTIONS

Before providing some hints about the theory of semi-
parametric estimation and about the SCRB, let us discuss an
example of a semiparametric model that will help us to clarify
the basic ideas. We focus our attention on the class of RES
distributions [9], [10]. This family of distributions has been
recognized to be one of the more suitable and general model to
statistically characterize the non-Gaussian, heavy-tailed, nature
of the disturbance in many practical applications [11], [12].

A random vector x ∈ RN is said to be RES-distributed if
it has a relevant pdf of the form:

pX(x) = 2−N/2|Σ|−1/2g((x− µ)TΣ−1(x− µ)), (4)

where g : R+
0 → R+ is called density generator. The RES

class encompasses the whole family of the (real) Compound

Gaussian (CG) distributions as a special case. Moreover,
it contains non-Gaussian and non-CG distributions as well,
as for example, the Generalized Gaussian (GG) distribution.
Even if the RES class and its complex counterpart, the CES
class, are two celebrated disturbance models, their intrinsic
semiparametric structure has not been investigated as yet.

In almost all practical applications involving the RES model,
we are generally interested in the estimation of the mean value
µ and/or of the scatter matrix Σ of the RES distributions, irre-
spective of the particular density generator g. Therefore, g can
be considered as a nuisance function. It is immediate to verify
that the RES family can be interpreted as a semiparametric
model of the form:

Pµ,Σ,g , {pX(x|µ,Σ, g), (µ,Σ) ∈ RN ×M, g ∈ G}, (5)

where M indicates the set of all the positive definite, sym-
metric N ×N matrices and G indicates the set of the density
generators. Due to the elliptical symmetry that characterizes
the RES class, the relevant semiparametric model is a partic-
ular instance of a semiparametric group model (see [5] (Sect.
4.2)). Before providing a discussion on the mathematical tools
needed to handle estimation problems in the presence of an
(infinite-dimensional) nuisance function, we first sketch, in the
next section, a new geometrical reading of the classical esti-
mation theory in the presence of finite-dimensional nuisance
parameters that will be the basis for its generalization to the
semiparametric framework.

III. ESTIMATION IN PARAMETRIC MODELS: A
GEOMETRICAL INTERPRETATION

We now introduce a geometrical interpretation of the finite-
dimensional estimation theory that can be extended to semi-
parametric estimation. The classical parametric estimation
theory can be reformulated using three main ingredients:
• the Hilbert space of all the zero-mean, vector-valued,

random functions of the observation vectors,
• a notion of tangent space for a statistical model;
• an orthogonal projection operator.
Before introducing these three geometrical objects, it is

worth pointing out that here we assume to deal with real
random vectors and real parameters. The extension to the
complex field falls outside the scope of this paper. More-
over, unless otherwise stated, we assume to have a single
random observation vector x at our disposal. This is not a
big limitation, since the extension to the case of a set of
M independent and identically distributed (i.i.d.) observation
vectors is straightforward. The generalization to the non i.i.d.
case is discussed in [13]. Lastly, due to the lack of space, we
will not provide any details about the formal definition of a
Hilbert space, a linear subspace of a Hilbert space and of the
projection operator. We refer the reader to the book [14] or to
[5] (Sections A.1 and A.2).

Let us start from the parametric model defined in (1) where
θ is a d-dimensional parameter vector and x is an observation
vector. We could be interested in estimating a subvector of
θ. Then θ can be partitioned as θ = (γT ,ηT )T ∈ Γ × Ω ⊆
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Rq × Rr where the q-dimensional vector γ is the vector of
the parameters of interest while the r-dimensional vector η is
the vector of the nuisance parameters. Note that q + r = d.
In the reminder of this section, we always indicate the true
parameter vector as θ0 = (γT0 ,η

T
0 )T and the related true pdf

as p0(x) , pX(x|θ0). Consequently, we have that x ∼ p0(x)
where ∼ stands for “is distributed according to”. Finally,
E0{·} indicates the expectation operator taken with respect
to the true pdf p0(x).

A. The Hilbert space of the q-dimensional random functions

We introduce here a Hilbert space that plays a fundamental
role in the following development. Consider the set Hq of
all the q-dimensional vector-valued functions of the random
vector x ∼ p0(x) such that:

Hq = {h|h(x) ∈ Rq, E0{h} = 0, E0{hTh} <∞}, (6)

where, in the expectation operator, we dropped the dependence
of h on x for notation simplicity. This convention will be
adopted from here onwards. It is immediate to verify that Hq
is a Hilbert space whose inner product is defined through the
expectation operator, i.e. 〈h1,h2〉 = E0{hT1 h2},∀h1,h2 ∈
Hq [15] (Sect. 2). Since h is a q-dimensional function of a
random vector x, we can define its q× q covariance matrix in
the usual way as:

C0(h) , E0{hhT } ∈ Rq×q. (7)

Let us investigate the geometrical structure of Hq . Specifi-
cally, we focus on the derivation of an explicit expression of
the orthogonal projection of a generic element h into a finite-
dimensional subspace of Hq . Following [15] (Sect. 2.4), let
us define v = [v1, · · · , vk]

T as a column vector of k arbitrary
elements of H1 that is the Hilbert space of functions obtained
from (6) by choosing q = 1. As a finite-dimensional subspace
of Hq , we consider the linear span of vector v defined as:

U , {Av : A is any matrix in Rq×k}. (8)

We want to find the orthogonal projection of an arbitrary
element h ∈ Hq onto U , i.e. Π(h|U). From the Projection
Theorem (see e.g. [5] (Sect. A.2)), we know that this projection
exists, it is unique and it can be explicitly written as:

Π(h|U) = E0{hvT }C−10 (v)v. (9)

For the sake of clarity, it is worth recalling that Π(h|U), h and
v are all vector-valued functions of the random observation
vector x. As we will show in Subsect. III-C, this explicit ex-
pression of the projection operator is the key for a geometrical
description of the Cramér-Rao inequality in the presence of a
finite-dimensional nuisance parameter vector.

B. The parametric nuisance tangent space

In order to define the parametric nuisance tangent space,
we first need to recall the notion of score vector. Let Pθ be
a parametric model as in (1) and let x ∼ p0(x). Then, the
score vector for x in θ0, indicated as sθ0 ≡ sθ0(x), is the

d-dimensional vector-valued function whose entries, for i =
1, . . . , d, are defined as:

[sθ0
]i , [∇θ ln pX(x|θ0)]i =

∂ ln pX(x|θ)

∂θi

∣∣∣∣
θ=θ0

. (10)

Note that, if θ0 = (γT0 ,η
T
0 )T , the score vector in (10)

can be partitioned as sθ0 =
(
sTγ0

, sTη0

)T
. Under the usual

regularity conditions that allow for the order inversion between
integral and derivative operators, the score vector is a zero-
mean random vector, i.e. E0{sθ0

} = 0 and each of its entries
has finite variance, i.e. E0{[sθ0

]2i } < ∞. Consequently, each
entry of sθ0 belongs to H1 obtained from (6) with q = 1.
Then, using the procedure discussed in Subsection III-A, we
can define a finite-dimensional subspace of Hq (see (8)) as
the linear span generated by the entries of the nuisance score
vector sη0

. In particular, we define the nuisance tangent space
as the finite-dimensional subspace of Hq spanned by the
entries of sη0 , i.e.

Tη0 , {Csη0 : C is any matrix in Rq×r}, (11)

where q = dim(γ) and r = dim(η).

C. The efficient score vector and the Cramér-Rao Bound

As before, let Pθ be a parametric model as in (1) and let
x ∼ p0(x) be the random observation vector, then the Fisher
Information Matrix (FIM) for θ0 is defined as follows:

I(θ0) = E0{sθ0s
T
θ0
} =

(
C0(sγ0

) Iγ0η0

ITγ0η0
C0(sη0

)

)
(12)

where Iγ0η0
, Ep0{sγ0

sTη0
} (see e.g. [4]). Moreover, let γ̂(x)

be an unbiased estimator of the vector of the parameter of
interest γ0 in the presence of the nuisance vector η0. Then,
the Cramér-Rao inequality on the error covariance matrix of
γ̂(x) can be easily established as:

E0{(γ̂(x)− γ0)(γ̂(x)− γ0)T } ≥ CRB(γ0|η0)

,
(
C0(sγ0

)− Iγ0η0
C−10 (sη0

)ITγ0η0

)−1
.

(13)

In particular, CRB(γ0|η0) can be obtained as the top-left sub-
matrix of the inverse of the FIM I(θ0) in (12) whose explicit
expression, given in (13), follows directly from the application
of the Matrix Inversion Lemma. Interestingly enough, this
result can also be obtained using the geometrical approach
discussed in Subsects. III-A and III-B. To prove this, we firstly
introduce the notion of efficient score vector ([5] (Sect. 2) and
[15] (Sect. 3.4)). The efficient score vector s?0 ≡ s?0(x) is
defined as the residual of the score vector of the parameters
of interest sγ0

after projecting it onto the nuisance tangent
space Tη0 defined in (11):

s?0 , sγ0 −Π(sγ0 |Tη0)

= sγ0
− E0{sγ0

sTη0
}C−10 (η0)sη0

,
(14)

where, for the last equality, we used the explicit projection
formula derived in (9). Roughly speaking, the efficient score
vector can be used to quantify the amount of information
carried by the true data pdf, pX(x|θ0), about the vector of
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parameters of interest γ0 when the nuisance vector η0 is
unknown. This information can be summarized in the efficient
FIM defined as:

I?(θ0) = C0(s?0) = E0{s?0(s?0)T }
= C0(sγ0)− Iγ0η0C

−1
0 (sη0)ITγ0η0

,
(15)

where the last equality follows by substituting the expression
of the efficient score vector, given in (14), in the expectation
operator in (15). It is immediate to verify that the inverse of
the efficient FIM is equal to the CRB on the estimation of γ0

in the presence of the nuisance vector η0 given in (13), i.e.

CRB(γ0|η0) = (I?(θ0))−1. (16)

Equality in (16) provides the link between the classical ap-
proach to estimation theory and the geometrical one, intro-
duced in Subsects. III-A and III-B. More important, it shows
us that, in order to derive a CRB for estimation problems
in the presence of nuisance parameters, we only need two
geometrical objects: the nuisance tangent space Tη0

and a pro-
jection operator on Tη0

, i.e. Π(·|Tη0
). Remarkably, none of the

previous geometrical objects requires the finite-dimensionality
of the nuisance parameters, hence they can be readily applied
to the semiparametric framework.

IV. EXTENSION TO SEMIPARAMETRIC MODELS

The geometrical framework previously introduced can be
extended to the semiparametric case. In order to maintain the
notation as consistent as possible with the one used in Sect.
III, we define as semiparametric model the set of densities:

Pγ,l , {pX(x|γ, l),γ ∈ Γ ⊆ Rq, l ∈ L} , (17)

where, as before, γ is a q-dimensional vector of the parameters
of interest, while l is a nuisance function belonging to some set
L. We denote the true “semiparametric vector” as (γT0 , l0)T ∈
Γ×L, and consequently the true pdf is p0(x) , pX(x|γ0, l0).
Clearly, if we set the unknown nuisance function l ∈ L to be
the true one, i.e. l0, the model Pγ,l0 ≡ Pγ can be considered as
a parametric model, where each pdf is indexed by the finite-
dimensional parameter vector γ ∈ Γ. As discussed in Sect.
I, we cannot directly apply inference methods developed in
the parametric framework to the semiparametric one because
of the non-parametric, infinite-dimensional nature of the nui-
sance function l ∈ L. This dimensionality problem can be
overcome by introducing the concept of parametric submodel
of a semiparametric model ([5] (Sect. 3.1, Def. 1) and [15]
(Sect. 4.2)). Specifically, the i-th parametric submodel of the
semiparametric model Pγ,l, denoted as:

Pγ,νi(η) = {pX(x|γ, νi(η)),γ ∈ Γ,η ∈ Ωi} , (18)

is defined as a class of parametric pdfs indexed by a finite-
dimensional parameter vector (γT ,ηT )T ∈ Γ×Ωi ⊆ Rq×Rri ,
such that, for every i ∈ I:
C0) νi(η) : Ωi → L is a smooth parametric map,
C1) Pγ,νi(η) ⊆ Pγ,l,
C2) p0(x) ∈ Pγ,νi(η), i.e. there exists a vector (γT0 ,η

T
0 )T

such that pX(x|γ0, νi(η0)) = pX(x|γ0, l0) , p0(x).

Condition C1 tells us that all the pdfs that compose each
possible parametric submodel Pγ,νi(η) have to belong to the
semiparametric model Pγ,l as well. Moreover, Condition C2
highlights the fact that each parametric submodel Pγ,νi(η)

must contain the true pdf p0(x). Roughly speaking, by using a
parametric submodel Pγ,νi(η) in place of Pγ,l we are actually
identifying the infinite-dimensional parameter l ∈ L with the
finite-dimensional nuisance parameter vector η ∈ Ωi ⊆ Rri
whose dimension ri depends on the choice of the particular
parametric submodel. The way to generalize the theory devel-
oped for parametric models to semiparametric models should
now be clear. The idea is to exploit the finite-dimensional
statistical results in the (artificial) set of parametric submodels
{Pγ,νi(η)}i∈I and then “take the limit” to generalize them to
the infinite-dimensional semiparametric framework.

A. The semiparametric nuisance tangent space

Let us now define a key element of the semiparametric
theory, i.e. the semiparametric nuisance tangent space Tl0 ,
according to the definition given in [6] and [15] (Sect. 4.4).
Note that a more general (but more abstract) definition is
given in [5] (Sect. 3.2) and in [16]. At first, let us recall that
the Hilbert space Hq in (6) is a metric space with squared
distance given by ||h1 − h2||2 = E0{(h1 − h2)T (h1 − h2)}.
The semiparametric nuisance tangent space Tl0 of the semi-
parametric model Pγ,l is defined as the closure of the union
of all nuisance tangent spaces

Tη0,i
, {Cisη0,i

: Ci is any matrix in Rq×ri} (19)

of the parametric submodels {Pγ,νi(η)}i∈I ⊆ Pγ,l. Specif-
ically, Tl0 ⊆ Hq is the subspace of all q-dimensional, zero-
mean, vector-valued, random functions t ∈ Hq for which there
exists a sequence {Cisη0,i

}i∈I such that:

||t−Cisη0,i || −→
i∈I

0, (20)

where sη0,i
is the nuisance score vector of the parametric

submodel Pγ,νi(η) and the matrices Ci have appropriate di-
mensions, i.e. Ci ∈ Rq×ri when the nuisance parameter vector
η belongs to Rri . Using this definition, the semiparametric
nuisance tangent space can be simply set up as:

Tl0 =
⋃

{Pγ,νi(η)}i∈I

Tη0,i
. (21)

Note that the closure A of a set A is defined as the smallest
closed set that contains A, or equivalently, as the set of all ele-
ments in A together with all the limit points of A. In our case,
the limit points are those defined by the convergence points of
all the sequences in (20). The semiparametric nuisance tangent
space Tl0 is assumed to be a closed and linear subspace of
the Hilbert space Hq (see [16] (Assumption S), [15] (Sect.
4.4, Remark 5)). Then, the existence and the uniqueness of
the orthogonal projection operator onto Tl0 , i.e. Π(·|Tl0), is
guaranteed by the Projection Theorem.
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B. The Semiparametric Cramér-Rao Bound

The projection operator Π(·|Tl0) leads us to the definition
of the semiparametric counterpart of the CRB, reported in
Theorem 1.

Theorem 1: The Semiparametric Cramér-Rao Bound
(SCRB) for the estimation of the finite-dimensional vector γ0

in the presence of the nuisance function l0 ∈ L is given by:

SCRB(γ0|l0) , sup
{Pγ,ηi

}i∈I
C−10 (s?0,i) = [Ī(γ0|l0)]−1, (22)

where s?0,i = sγ0
−Π(sγ0

|Tη0,i
) (see (14)) is the efficient score

vector for the i-th parametric submodel Pγ,ηi while

Ī(γ0|l0) , E0{s̄0(s̄0)T }, (23)

is the semiparametric efficient FIM and s̄0 ≡ s̄0(x) is the
semiparametric efficient score vector defined as:

s̄0 = sγ0
−Π(sγ0

|Tl0), (24)

where Π(sγ0 |Tl0) is the orthogonal projection of sγ0 on the
semiparametric nuisance tangent space. Note that s̄0, sγ0

and Π(sγ0
|Tl0) are, in general, q-dimensional vector-valued

random functions of the observation vector x.
This theorem can be found in [15] (Theorem 4.1) and in

[6]. A more abstract and general formulation can be found in
[16] and in [5] (Section 3.4).

Two comments are in order. First of all, it is immediate
to verify that the expression of the SCRB in (22) and of the
semiparametric efficient score function in (24) are formally
equivalent to the ones introduced in Sect. III-C in the case of
finite-dimensional nuisance parameters. The only difference is
in the definition of the nuisance tangent space. This confirms
the intuition that, from and abstract and geometrical stand-
point, the parametric and the semiparametric frameworks are
equivalent. Secondly, from (22), it is clear that SCRB(γ0|l0) is
higher that any CRB(γ0|η0,i) = C−10 (s?0,i) derived for the i-th
parametric submodel. In words, this means that a semipara-
metric model contains less information on the parameter vector
of interest γ0 than any of its possible parametric submodel.

The SCRB is of great practical usefulness since it provides
a lower bound to the error covariance of any robust estimator
of the finite-dimensional parameter vector γ0, i.e. of any
estimator of γ0 that does not rely on the a-priori knowledge
of the nuisance function l0. For example, the SCRB in (22)
can be used to obtain a lower bound for any robust estimator
of the scatter matrix Σ of a set of RES-distributed observation
vectors ([17], [18]).

V. CONCLUSION

The aim of this paper is to provide a fresh look at semi-
parametric estimation, and in particular at the Semiparametric
Cramér-Rao Bound (SCRB), that can be usable by a wide
audience of SP practitioners. In particular, the possible appli-
cations and the potential advantages, that we may have in ad-
dressing classical problems by using this approach, have been
discussed. Of course, a huge amount of work still remain to be
done. Among the numerous open issues, the biggest challenge

for the application of the semiparametric theory to practical
inference problems is the calculation of the projection operator
Π(·|Tl0). The monograph [5] provided us with many examples
of this calculation for different semiparametric models. A
different and more general (since it can be applied also in non
i.i.d. cases) approach is discussed in [13]. Our current effort
is devoted to the investigation of semiparametric inference
methods in the context of RES and CES distributions. In
particular, we are looking for a closed form expression of
the SCRB for the estimation of the mean vector and the
scatter matrix to assess the performance of various robust M -
estimators.
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