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Abstract—This paper examines the classification of walking,
standing and mirrored persons based on radar micro-Doppler
(m-D) measurements to resolve ambiguities in thermal infrared
(TIR) mirror images in firefighting. If the walking or standing
person is observed directly, its m-D is measured. In the case of
a person mirrored on a reflecting object, only the m-D of the
reflecting object is measured. Their spectrogram is differentiable
which enables a classification. One difficulty is the random
movement of the handheld radar which leads to short observation
durations and Doppler blurring. A classification based on short
spectrograms is proposed, where the influence of the short-time
Fourier transform window length is investigated. Furthermore, a
regularization is proposed to improve the classifier interpretabil-
ity for this safety application.

I. INTRODUCTION

This paper investigates the person recognition using a
handheld radar system. Our application is a handheld thermal
infrared (TIR) camera for firefighters, which is enhanced by
a radar sensor. The main purpose of the radar sensor is
localization. However, this paper examines the radar target
classification in firefighting. The TIR camera as well as the
radar are able to measure through smoke. In the TIR image,
reflections of firefighters occur on flat surfaces (e.g. on glass,
metal or painted surfaces) which are often mistaken for a
person to be rescued, see Fig.2. This has to be resolved.

The Doppler of a radar signal is a frequency shift due to
the relative radial velocity between the radar and a target.
If the target consists of multiple scatterers such as limbs
of a person, their differences in velocity lead to multiple
Doppler frequencies, which are termed micro-Doppler (m-D).
The m-D often takes the form of sidelobes in the Doppler
spectrum near the main Doppler frequency. Their shape is
usually characteristic for the target type and is hence utilized
for target classification.

In this paper, the radar sensor is used to classify persons,
which is a useful decision support for firefighters. The terms
“real” and “mirrored” person are used with respect to the
TIR image, i.e. a real person is observed directly, whereas
a reflection on a flat surface is a mirrored person. A walking
person and a standing person with subtle movements of body
parts show sidelobes in the m-D. In contrast, a mirroring
object has no moving parts at all and a mirrored person (e.g.
a mirrored firefighter) exhibits a single significant peak in the
Doppler spectrum. The contributions of this paper are:

o The first approach which allows a classification of walk-
ing, standing and mirrored persons with a moving (hand-
held) radar.

o A radar signal processing chain to extract spectrograms,
while simultaneously permitting localization.
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« An improved choice of the spectrogram window length to

make subtle movements of standing persons observable.

« A novel regularization for the training of the classifier to

improve the interpretability of the learned features.

This paper is organized as follows: The next Sec.II revises
previous works. Sec. III discusses the signal processing and the
trade-off between Doppler resolution and blurring. The person
classification is explained in Sec.IV. Experiments with real
measurements are shown in Sec. V and Sec. VI concludes this
paper.

II. PREVIOUS WORKS

The m-D is commonly used to classify radar targets such
as humans [1]. Well-known applications are the elderly fall
detection [2] or the classification of different human activities.
Human activities are classified with high accuracy [3], through
a wall [4], in an environment with strong clutter [5] or in multi-
target scenarios [6]. In [7], the wavelet transform was used
instead of the spectrogram to improve the temporal resolution.
2-D convolutional neural networks (CNNs) were applied to
classify m-D spectrograms, which are treated similar to images
in [8], [9], [10], [11].

[2]-[10] require an observation length of several seconds,
which is not possible in firefighting. Furthermore, they use an
unmodulated continuous wave radar, which is unable of local-
izing targets because range estimation is impossible. Moreover,
[2]-[11] use a stationary radar and are hence unsuitable in our
handheld scenario.

Another well-known application is object classification for
automotive, where persons, bikes, cars, trucks and other ob-
jects are distinguished [12], [13], [14]. In this application,
only short radar measurements are evaluated and the shape of
the peaks in the Doppler spectrum is used for classification.
The temporal behavior is not utilized at all. To improve
the visibility of person m-D, [15] suggests to increase the
radar carrier frequency and [16] suggests to increase the
measurement duration. [17] gives an overview of alternative
measurement methods, e.g. using a radar interferometer for
measuring radial velocities or a passive radiometer.

The modulation used in these automotive applications is
able to combine localization and classification. However, only
the m-D spectrum is used rather than the spectrogram. The
spectrum is calculated over a few milliseconds, leading to
a bad Doppler resolution. Consequently, only persons with
strong movements (e.g. walking) can be classified and standing
persons are unrecognizable.

In contrast, the approach of this paper combines the benefits
of the automotive radar modulation for localization and the
spectrogram-based methods for recognition of walking, stand-
ing or mirrored persons using a handheld radar.
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Modulation parameter value
Chirp bandwidth B 3GHz
Carrier frequency f 94GHz
Number of samples N¢ 1000
Chirp interval T, 200us
Number of chirps N, 2048 (0.41s)

Fig. 1: Photograph of the handheld radar system and summary
of the modulation parameters of this work. Further details are
given in [18].

III. RADAR SIGNAL PROCESSING
A. Radar system
The radar system of [18] is used in this work, see Fig. 1. It

uses the chirp sequence radar waveform [19], [20], [21]:
K
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z is the measured signal with fast- and slow time sample
index nf € {1,...,N¢} and n, € {1,...,N,}. Tt and T} are
the sampling and pulse repetition interval, respectively. T is
the pulse duration (usually 7" < T}), f is the carrier frequency,
c the propagation speed of the electromagnetic wave, and B
is the bandwidth. The signal is considered as a superposition
of K scattering points (from a single or multiple objects),
where Ay, 1y, and vy, are the (complex) amplitude, range and
radial velocity of the k-th scatterer. The velocity differences
of multiple scatterers of a single object correspond to the
m-D. Fig.1 summarize the radar modulation settings. The
modulation design is according to the requirements of the radar
localization task in firefighting, except for the total number of
recorded chirps (N, = 2048), which is significantly larger than
usual. With such a high measurement duration, the Doppler
resolution is greatly improved. However, an application of the
two-dimensional DFT to obtain the range-Doppler spectrum
is not possible because of Doppler blurring (non-stationary
Doppler, cf. Sec.III-B).

Instead, the following signal processing is proposed: After
calibration and windowing, a one-dimensional discrete Fourier
transform (DFT) is applied row-wise to convert the fast-time
samples into a range spectrum, see the range-slow-time matrix
in Fig. 3. Then, an incoherent integration (sum of absolute val-
ues) of the range spectrum is performed over all N, chirps and
targets are detected using a CFAR detector in range direction.
For each detected target at a range bin, the corresponding
column of the range-slow time matrix forms the so-called
target signal (N, samples), see Fig. 3. The spectrogram of each
target signal is used for classification in the sequel.

In addition to the m-D, also the micro-ranges (m-r, char-
acteristic shape of radar targets in range direction) could be
used to improve classification. However, this paper examines
a classification on m-D alone to focus on the trade-off of blur-
ring and Doppler resolution. An extension to a classification
using both m-D and m-r is straightforward.

B. Spectrogram and Doppler blurring

For the spectrogram of the target signal, the choice of
the short-time Fourier transform (STFT) window length Ny,
(Ny < N,) is crucial. The spectrogram has the size Ny, x NV,
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(a) Infrared image of a real person  (b) Infrared image of a person
mirrored on a flat surface.

Fig. 2: Infrared image of a real person and its mirror image
on a flat surface (whiteboard) are difficult to distinguish for
firefighters.
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Fig. 3: A target signal is extracted from the range-slow time
matrix for each detected target. It is then divided into N;
overlapping windows to calculate the spectrogram.

where N, is the number of time samples in the spectrogram.
If N, is large, the Doppler resolution is high, but Doppler
blurring can occur if the Doppler and m-D are changing over
this window interval. A spectrogram with a small Ny, is free
of Doppler blurring, but the Doppler resolution is low, which
makes classification difficult. In this paper, 50% overlap of the
STFT windows is chosen, see Fig. 3.

After calculating the spectrogram of a target signal, an
incoherent integration over [N, windows and the application
of a CFAR detector yields the main frequency peak at the
target Doppler. To take the ego-velocity of the handheld radar
into account, the part of the spectrogram containing the target
Doppler and neighboring velocity bins in a range of £0.57 is
extracted, see Fig.4. Furthermore, the extracted spectrogram
is scaled (multiplied) with the target range to the power of 4
to compensate the radar path propagation loss.

To illustrate the trade-off between Doppler resolution and
blurring, Fig. 4 shows some spectrograms of the target signals
of a walking, standing and mirrored person. Fig.4 (a), (d)
and (g) show the Doppler spectrogram for N,, = 256. This
is similar to the modulation of the automotive approaches in
[11], [12], [13], [14]. In this case, the m-D of the standing
person is hardly visible due to a low Doppler resolution and
the shapes of the peaks of the standing person and mirrored
person are similar. However, a walking person has a distinctive
m-D. Increasing N, to 1024, Fig.4 (e) and (h) show that the
m-D of the standing person and the mirrored person can now
be distinguished due to a higher Doppler resolution. Fig.4
(e) shows the m-D of the standing person where sidelobes
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Fig. 4: m-D spectrograms for a walking, standing and mirrored person for different STFT window lengths. For N,, = 1024
the standing person and the mirrored person are clearly distinguishable. All data in (a)-(c), (d)-(f) and (g)-(i) stem from the
same target signals respectively. The offset of the velocity axis is due to the extraction of the target peaks and neighboring

velocity bins to compensate ego-motion of the firefighter.

next to the main peak are visible. In contrast, the m-D of
the mirrored person in Fig.4 (h) contains only a single peak
because of the block motion of the mirrored person. However,
a further increment of Ny, to 2048 in Fig.4 (c), (f) and (h)
with Ny, = N, and N, = 1 leads to Doppler blurring. Both
Doppler spectra of the standing person and mirrored person
contain sidelobes next to the main peak.

These m-D sidelobes are due to the body motion (a person
naturally does not stand completely still). The m-D of still
persons (e.g. breathing or heart beat) was indistinguishable
from the handheld motion blurring in our experiments.

IV. CLASSIFICATION OF PERSONS AND OBJECTS
A. Architecture

In firefighting, real and mirrored persons are to be dis-
tinguished by the classifier. This is a binary classification
problem. However, we found that it is better to perform a 3-
class classification into walking, standing and mirrored person
because of a high confusion between standing and mirrored
persons. Hence, a 3-class classifier is trained and the results of
walking and standing persons are subsequently merged to the
person class. The spectrograms generated in Sec.III (Fig.4)
are used as input to the classifier.

In this paper, we use neural networks (NN) for classification.
Spectrograms can be treated as images and fed to a NN with
2-dimensional input (2-D NN), similar to [8], [9], [11], [10].
A single classification result is obtained for each spectrogram.

Alternatively, a 1-dimensional input can be used to classify
the [V, different m-D spectra of a spectrogram separately
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(1-D NN). Then the classification results of the individual m-
D spectra are combined to make a decision for the whole
spectrogram. This paper uses a majority vote of the N,
classification results for the final decision.

This work uses NN with 3 fully-connected layers. While
convolutional layers (CNNs) improved the classification in
previous literature, experiments showed that this is not the case
in this application. The reason is a different preprocessing of
the data. The convolutional and pooling layers in [8], [9], [11],
[10] are necessary to obtain an invariance of the target peak
position (absolute velocity) in the spectrogram. In contrast,
the spectrograms of this work are already centered around the
main peak by the preprocessing.

The spectrogram bins of the input layer were normalized
to zero mean and unit variance independently. The first two
layers (relu-activation) perform feature extraction and the
last layer (softmax activation) performs classification. Deeper
architectures did not lead to an improved classification in our
experiments with the given dataset.

B. Regularization

An unregularized training (using only the categorical cross-
entropy as training loss) leads to network weights which
are difficult to interpret. This is problematic in our safety
critical application. The first dense layer is expected to extract
features. The second dense layer is expected to combine those
features and the last dense layer performs classification. To
realize this intuition in the given network, different regulizers
are proposed.
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[14] uses hand-crafted filters for the m-D as features,
which are easily interpretable. In this work, such interpretable
features are learned from the data. In the 1-D case, the
kernel weights reflect which m-D components are used for
classification (features). The intention is that neighboring m-
D cells should have similar weights. The motivation for this is
that contiguous regions in the m-D spectra can be associated
with particular sidelobes. These sidelobes can have a physical
or anatomical interpretation. Examples will be given in Sec. V.
Furthermore, such kernels are more robust to slight variations
of the m-D than arbitrary weights. Such continuous weights
can be achieved by penalizing the sum of absolute or squared
differences of the weight matrix entries:

N1 No—1
= ALl Z Z Wil oy (@)

ni=1no=1
N1 No—1

Tz = A2 Z Z (Wil .mo)

n1_1 ’I’Lo—

(’flh"o)

- [Wl](nl,no+1)|2 (3)

where [W1](5,, ng) is the (n1,n0)-th entry of the weight matrix
of the first dense layer Wy. ng, n; are indices for the input
layer and first dense layer neurons, ranging from 1 to the
number of input neurons Ny and the number of neurons in
the first dense layer IN;, respectively. r;; in Eq.2 is an I1-
regularizer (11-r) on the first weight matrix differences and 7,2
in Eq.3 is an 12-regularizer (12-r) on the same. The effect of
the norm (11 or 12) is examined in Sec. V. Ay ; and A o are the
weighting factor for the regularization of the first layer. For
efficient training, the sums in Eq.2 and 3 can be implemented
as matrix operations.

In the second layer, a 11-regularization on all elements of
the weight matrix Ay ||1 is applied. The motivation for
this is to ensure that the second layer only combines features
from the first dense layer. Otherwise, features could implicitly
be generated in the second layer and the regularization of the
first layer would be bypassed. The classification layer is not
regularized.

V. EXPERIMENTS

This section compares the classification approaches dis-
cussed in Sec. IV. A dataset was created by measuring multiple
indoor scenarios with different persons, rooms and movements
of the radar. To increase the number of samples, a flipped
(along the m-D axis) version of all spectrograms is also
added to the dataset (data augmentation). In the dataset the
numbers of samples of walking and standing persons are
equal and the number of mirrored persons is twice as high to
obtain a balanced dataset with respect to the original binary
problem. The training dataset consists of 1904 samples (476
standing persons, 476 walking persons and 952 mirroring
indoor objects, such as walls, windows or furniture) and the
test dataset consists of 228 samples (57 standing, 57 walking,
114 mirrored).

This paper uses real radar measurements. Care has to be
taken when dividing the data into training and test datasets. All
spectrograms from one measurement scenario (room, person)
are either in the training or test dataset to avoid overfitting.
Each sample consists of N, = 2048 chirps, which correspond
to a measurement duration of 0.41s. The network consists of
N7 = 64 and N, = 16 hidden neurons and was trained using
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TABLE I: Average test accuracy and BER
walking and mirrored persons

for standing,

Ny classifier Om Oty o BER
1-D NN 0.789 1 0.895 0.131
256 1-D NN 11-r | 0.772 1 0.945 0.127
1-D NN 12-r | 0.789 1 0.930 0.123
2-D NN 0.807 1 0.667 0.180
1-D NN 0.789 1 0.947 0.118
341 I-D NN 11-r | 0.789 0.982 0.947 0.123
1-D NN 12-r | 0.789 1 0.947 0.118
2-D NN 0.825 1 0.702  0.162
1-D NN 0.789 0982 0982 0.114
512 1-D NN 11-r | 0.771 0982 0.965 0.127
1-D NN I2-r | 0.781 0982 0.965 0.123
2-D NN 0.807 0947 0930 0.127
1-D NN 0.789 1 0.982 0.109
682 I-D NN 11-r | 0.781 0982 0.982 0.118
1-D NN 12-r | 0.789 1 0.982 0.109
2-D NN 0.798 1 0.737 0.167
1-D NN 0.754 0965 0.982 0.135
1024 1-D NN 11-r | 0.789 0965 0.982 0.118
1-D NN I2-r | 0.781 0965 0.965 0.127
2-D NN 0.77 1 0.75 0.175
1-D NN 0.746 1 0.982 0.131
2048 | 1-D NN I1-r | 0.754 0982 0.982 0.131
1-D NN I12-r | 0.754 0.982 0.982 0.131

(a) no regularization

[Wl](n1 ,nQ)

Wi1l(n1,m0)

(Wi1l(n1,n0)

| | | | I |
0 10 20 30 40 50 60

no

Fig. 5: Examples of the learned Kernels of the first layer (1D
NN) of Ny, = 512. Without regularization, the learned weights
are difficult to interpret. In contrast, features such as mainlobe,
sidelobes or their superpositions are visible with the proposed
regularization. 11-regularization leads to regions of constant
weights with sharp boundaries, while 12-regularization leads
to smooth kernels.
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Keras. r;; or 1y are weighted with A;; = 0.003 and A\ 2 =
0.01, respectively and Ao = 1076, cf. Sec.IV-B.

In the experiments of this paper, different window lengths
of Ny, € {2048,1024,682,512,341,256} are compared. The
accuracy (rate of the correctly classified samples and the
number of all samples of a class) of walking persons a,
standing persons «g and mirrored persons oy, as well as the
balanced error rate (BER, rate of all false classifications and
all test samples) are used for evaluation. For the application
of this paper, a distinction of walking and standing persons is
insignificant, hence only the confusion of real and mirrored
persons is analyzed.

The results are shown in Tab 1. Walking persons are mostly
classified correctly. In contrast, mirrored persons are some-
times confused as standing persons, due to their similar m-D.
The 2-D NN approach (similar to [11]) behaves reasonable,
but its performance is worse than a separate classification of
all m-D and subsequent combination (the 1-D NN proposed
in this paper). The reason is that for short spectrograms of
0.41s, the temporal characteristic is not very informative. The
1-D NN converge better than the 2-D NN because they have
less training parameters and hence utilize the limited dataset
better. The 1-D NN are trained on 1904 - N, samples, while
only 1904 samples are available for the 2-D NN.

The best classification (based on BER) is obtained for the
1-D NN with N,, = 682 (corresponding to 0.136s). Larger
Ny, result in Doppler blurring due to the handheld motion
and smaller Ny, reduce the Doppler resolution, as discussed
in Sec.III-B. Although the optimality of Ny, = 682 can
only be demonstrated for one particular application, this result
indicates that window durations in the order of 0.136s would
also improve the performance in other applications. This is
consistent with the result of [16].

Examples of the learned kernels of the first dense layer are
depicted in Fig.5. Fig.5(a) shows the kernel weights when
no regularization was applied during training. In this case, no
characteristic pattern can be observed. In contrast, the 11-r and
12-r in Fig.5(b) and (c) clearly reveal the learned features.
The green curves can be interpreted as a feature for the
mainlobe, while the red curves have high amplitudes at some
sidelobes. The blue curve in Fig. 5(c) has a periodic structure,
which might resemble a feature for swinging limbs (e.g. the
hand/foot moves twice as fast as the elbow/knee). Interestingly,
the proposed regularization has only a minor influence on
the performance of the 1-D NN. The 12-r achieves the same
result as the unregularized 1-D NN for N,, = 682, while the
11-r performs slightly worse. Hence, generating interpretable
kernels comes at almost no performance loss, which is an
advantage in this safety application.

VI. CONCLUSION

This paper examines the m-D based classification of real
and mirrored persons using a handheld radar for firefighting.
For each range target, the slow time signal is extracted and
its Doppler spectrum or spectrogram is used for a successful

weights of the following layer leads to interpretable features
without a loss of classification performance.
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