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ABSTRACT

This paper investigates different algorithms to perform image
restoration from single-photon measurements corrupted with
Poisson noise. The restoration problem is formulated in a
Bayesian framework and several state-of-the-art Monte Carlo
samplers are considered to estimate the unknown image and
quantify its uncertainty. The different samplers are compared
through a series of experiments conducted with synthetic im-
ages. The results demonstrate the scaling properties of the
proposed samplers as the dimensionality of the problem in-
creases and the number of photons decreases. Moreover, our
experiments show that for a certain photon budget (i.e., ac-
quisition time of the imaging device), downsampling the ob-
servations can yield better reconstruction results.

Index Terms— Bayesian statistics, Inverse problems, Im-
age processing, Poisson noise, Markov chain Monte Carlo,
Bouncy particle sampler

1. INTRODUCTION

Photon-limited imaging arises in many applications where the
light flux changes rapidly or is extremely limited. In such sce-
narios, the flux is quantified at photonic levels using single-
photon detectors. A wide range of applications operate in this
regime, such as light detection and ranging (lidar) [1,2], med-
ical imaging [3] and astronomy [4]. Photon count measure-
ments generally follow Poisson statistics, which vary signif-
icantly from the ones corrupted by Gaussian noise, yielding
poor results if Gaussian restoration methods are directly ap-
plied. Moreover, algorithms based on the variance-stabilizing
transformation fail to provide good estimates when the num-
ber of available photons is very low. In most photon-starved
imaging applications, the number of recorded photons is pro-
portional to the acquisition time. Thus, in order to reduce the
acquisition time, the aim is to provide reliable restorations us-
ing as few photons as possible.

∗Part of this work was supported by the Royal Academy of Engineering
under the Research Fellowship scheme.

The problem can be stated as follows: Given a set of
discrete photon measurements y = (y1, ..., yK)ᵀ ∈ ZK

+ =
{0, 1, . . . }K , we are interested in recovering the underlying
intensities z= (z1, ..., zN )ᵀ ∈ RN that are subjected to a lin-
ear operator A ∈ RK×N

+ , such as blur, missing pixels, com-
pressive measurements or tomographic projections, i.e.,

y|z ∼ P(Az). (1)

This inverse problem (i.e., recovering z from y) is often
severely ill-posed or ill-conditioned and prior regularization
is necessary to promote the solution to be in a set of feasible
images z. Many convex optimization algorithms based on
log-concave Bayesian models have been proposed to perform
maximum-a-posteriori (MAP) estimation. For example, PI-
DAL [5] is based on a total variation prior and solves the
inverse problem using an alternating direction method of
multipliers. Algorithms such as [5] are capable of computing
MAP estimates relatively fast, but cannot provide uncertainty
bounds for the estimates, which can be very valuable in many
applications involving decision making such as self-driving
cars [6]. In this paper, we formulate the inverse problem
based on Eq. (1) in a Bayesian framework and investigate the
efficiency of six different samplers at estimating the poste-
rior distribution of z. Specifically, we investigate four Markov
chain Monte Carlo (MCMC) methods for the Poisson restora-
tion problem: The unadjusted Langevin algorithm (ULA) [7],
the Metropolis adjusted Langevin algorithm (MALA) [7],
Hamiltonian Monte Carlo (HMC) [8, Chapter 5] and the re-
cent no U-turn Hamiltonian Monte Carlo (NUTS) scheme [9].
In addition, we evaluate the bouncy particle sampler (BPS),
a non-reversible rejection-free strategy [10]. For complete-
ness, we also include in our comparison the classical random
walk Metropolis (RWM) sampler [7]. Through a series of
experiments, we study the scaling properties of each sampler
as the dimension of the problem increases, i.e., as the size
of the image increases and we evaluate the quality of the
estimates as we vary the total number of photons. The main
contribution of this paper is to investigate different stochastic
simulation strategies in very high dimensional and very low
photon count scenarios.
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2. BAYESIAN MODEL

Consider a vector of K noisy measurements y ∈ ZK
+ and

a vectorized intensity image z ∈ RN
+ of n pixels. We are

interested in the posterior distribution of the intensity values
z given the measurements y denoted as p(z|y). Following
Bayes theorem, this posterior is given by

p(z|y) = p(y|z)p(z)∫
p(y|z)p(z)dz

. (2)

2.1. Poisson likelihood

The photon count of measurement yk is Poisson distributed

yk|z ∼ P

(
N∑

n=1

Ak,nzn

)
k = 1, . . . ,K (3)

where P(.) is the Poisson distribution. Assuming indepen-
dent noise realizations, the likelihood of y is

p(y|z) =
K∏

k=1

p(yk|z) (4)

where p(yi|z) is the probability associated with the Poisson
distribution of Eq. (3). To alleviate difficulties induced by
the positivity constraint on z, we consider the reparametriza-
tion zn = exn for n = 1, . . . , N , where the log-intensity
xn ∈ RN is no longer constrained to be positive, at the cost of
inducing an implicit prior for z. The modified log-likelihood
has a bounded Lipschitz constant as xn → −∞, yielding bet-
ter stability in low-photon count scenarios. A detailed study
of the trade-off involved in this change of variables can be
found in [11].

2.2. Laplacian filter prior

The target log-intensity vector x = (x1, ..., xN )ᵀ is regular-
ized with the prior p(x|λ) ∼ N (0, (λP )−1), where the pre-
cision matrix is P = DᵀD and D is the block circulant ma-
trix of the 2D Laplacian filter. This l2 regularizer promotes
smoothness in the log-image x. In this work, we choose this
differentiable prior to allow for a wide variety of eligible sam-
plers. In addition, it has been shown recently in [12] that
this prior can be easily modified by changing the fixed Lapla-
cian filter by other adaptive off-the-shelf denoisers to achieve
state-of-the-art restoration performance. An in-depth study of
this prior in a fully Bayesian configuration is out of the scope
of this paper and is subject to future work.

2.3. Posterior distribution

Following Bayes rule, the posterior distribution of x is

p(x|y, λ) ∝ p(y|x)p(x|λ) (5)

which can be written as p(x|y, λ) = 1
C exp(−Uy(x)), where

C is a normalizing constant and Uy(x) is the negative log-
posterior (or energy). Precisely,

Uy(x) = 1ᵀ
KAex − yᵀ log(Aex) +

λ

2
xᵀPx (6)

where [ex]n = exn and [log(x)]n = log(xn) are the element-
wise exponential and logarithm vectors and 1K = (1, . . . , 1)ᵀ

is theK×1 vector of ones. Note that Uy(x) is differentiable,
convex and proper for any y ∈ ZK

+ . If A is injective, the
energy Uy(x) is also strictly convex with gradient

∇Uy(x) = ex�
(
1N −Aᵀ(yᵀ � 1

Aex
)

)
�(Aᵀ1K)+λPx

where [ 1x ]n = 1
xn

and [x � y]n = xnyn denote the element-
wise vector inversion and multiplication.

3. ESTIMATORS AND INFERENCE STRATEGIES

The stochastic simulations methods presented in this work
provide information of the full posterior distribution. In
our experiments, we focus on two posterior statistics, the
marginal posterior mean of each pixel defined as

E{zn|y, λ} =
∫ +∞

0

znp(zn|y, λ)dzn

which is the minimum mean squared error estimator (MMSE)
of zn [13], and the marginal posterior variance

var{zn|y, λ} =
∫ +∞

0

(zn − E{zn|y, λ})2p(zn|y, λ)dzn.

These integrals are not analytically tractable. Thus we pro-
pose to compute numerical estimates µ̂n ≈ E{zn|y, λ} and
σ̂2
n ≈ var{zn|y, λ}, from samples of p(x|y, λ) generated us-

ing MCMC samplers or particle trajectories (in the BPS case).

3.1. Markov chain Monte Carlo

MCMC samplers construct a Markov chain of NMC samples
{x(s)|s = 1, . . . , NMC}, distributed according to the poste-
rior p(x|y, λ). Discarding the first Nbi burn-in iterations, the
posterior statistics of interest are then computed as

µ̂n =
1

NMC

NMC∑
s=Nbi

exp
[
x(s)n

]
(7)

and

σ̂2
n =

1

NMC

NMC∑
s=Nbi

exp
[
2x(s)n

]
− µ̂2

n. (8)

We consider five different MCMC samplers: the classical
RWM with a data-independent proposal and four gradient-
based samplers, ULA, MALA, HMC and NUTS. In the case
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of RWM and MALA, we adjust the parameter controlling
the variance of the proposal distribution during the burn-in
to achieve an acceptance rate close to the optimal one, as
explained in [8, Chapter 4]. We used the adaptive scheme
described in [14], in order to obtain an acceptance rate close
to 0.23 for RWM and 0.57 for MALA. For HMC, we fix the
path length and adapt the step size using the algorithm de-
scribed in [9] to obtain an acceptance rate close to the optimal
one of 0.65. NUTS controls both step size and number of
steps adaptively to yield acceptance rates close to 0.65.

3.2. Bouncy Particle Sampler

A non-reversible rejection-free sampler was recently pro-
posed in [10], performing better than the optimally tuned
HMC for some Bayesian models. This algorithm simulates a
particle that travels around the posterior with constant veloc-
ity v ∈ RN and performs elastic bounces with a hyperplane
of normal vector ∇Uy(x). If the energy is strictly convex,
the sth bouncing time τ (s) is computed by solving the one
dimensional equation

Uy(x
(s) + v(s)τ (s))− Uy(x

(s) + v(s)τ∗) = − log V (9)

where
τ∗ = argmin

t≥0
Uy(x

(s) + v(s)t) (10)

and V ∼ U(0, 1). In our configuration, the solutions of Eq.
(9) and (10) cannot be computed analytically and we use two
one-dimensional Newton iterative methods to find them. The
particle trajectory is ergodic, allowing estimates of µn and σ2

n

to be computed as time-averages of the trajectory, i.e.,

µ̂n =

NB∑
s=1

1

v
(s)
n

exp
[
x(s)n + v(s)n τ (s)

]
(11)

and

σ̂2
n =

NB∑
s=1

1

2v
(s)
n

exp
[
2x(s)n + 2v(s)n τ (s)

]
− µ̂2

n (12)

where NB is the total number of simulated bounces. To as-
sure convergence, the particle also performs random bounces
according to a user-specified refreshment rate, which was set
to 1 by cross-validation (see [10] for additional details about
the BPS algorithm).

3.3. Computational complexity

In a general setting, the matrix A can be dense (e.g., built
from many tomographic projections or degraded by a large
blurring kernel). The precision matrix P can also be dense, as
the prior can account for non-local correlations between im-
age patches [15]. Although this is not the case for the Lapla-
cian filter, we will keep the dense assumption for the sake of

generality. Under such assumptions, the conditional distribu-
tion of any pixel zn depends on many neighbours zi, i 6= n.
Thus, techniques that exploit a sparse posterior factor graph
(e.g., Gibbs sampling using a checkerboard scheme [16], lo-
cal bouncy particle sampler [10], Hamiltonian splitting ap-
proaches [8, Chapter 5]) are not applicable. For each sample
generated by an MCMC method or each bounce for NUTS,
the algorithm has to compute U(x) and/or ∇U(x), which
are dominated by the cost of evaluating the forward operator
Aex and the Laplacian prior term Px. The forward oper-
ator A requires NA flops of order O(NK), which reduces
to O(N logN) if A is block-circulant and the Fast Fourier
transform (FFT) algorithm is used. A similar cost is related
to the prior term Px, as it involves one filtering operation
of NP flops with order O(N logN). Note that the rest of
the operations have order O(N). We are interested in obtain-
ing good estimators for a small number of NP and NA flops.
Table 3.3 summarizes the number of per-sample (or bounce)
computations of each sampler.

Sampler Complexity
RWM NA +NP

ULA 2NA +NP

MALA 2NA +NP

HMC L(2NA +NP )
NUTS L(2NA +NP )
BPS (3k1 + 2k2)NA +NP

Table 1. Complexity per iteration of the proposed samplers
(k1, k2 are the numbers of Newton steps for Eq. (9) and (10)).

4. EXPERIMENTS

We investigated the performance of the samplers as functions
of the total number of photon counts and the dimensional-
ity of the problem. All the experiments were performed with
the “cameraman” image. We fixed the parameter control-
ling the amount of regularization λ = 2 by cross-validation.
Figure 1 shows the true intensity image and a noisy realiza-
tion with 104 photons. The burn-in was set to 30 % of the
computing time in all the simulations. First, we compared

Fig. 1. Left: True intensity image. Right: Noisy observations
for a 256× 256 image and 104 photons.
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the bias and variance of the estimates µ̂n and σ̂2
n of a ran-

domly chosen pixel for image sizes of 64×64, 128×128 and
256 × 256 pixels with a fixed photon budget of 104 photons
and an operator A defined as a blur of 3 × 3 pixels. Each
sampler was run 10 times using different random seeds. Fig-
ures 2 and 3 show the means and standard deviations of the
estimates µ̂n and σ̂2

n respectively. HMC achieves the best
performance overall, converging without bias in less com-
puting time. NUTS performs slightly worse, as the number
of steps per iteration increases significantly faster than HMC
with the image size, thus leading to less samples and worse es-
timates. MALA and ULA have reasonable performance, but
ULA shows biased estimates as it does not converge to the
exact posterior distribution [17]. The estimates of the means
converge relatively fast for BPS, but the estimates of the vari-
ances show markedly slower convergence with respect to the
other MCMC gradient-based samplers. RWM has the worst
performance for this example.

Fig. 2. Mean estimates versus the dimension of the restored
image. The error bars show the variation of the estimates for
10 different runs of each algorithm. The true parameter value
is denoted by the horizontal dashed line.

Second, we fixed the image size to 64× 64 and compared
the samplers versus the number of photon counts. Figure 4
shows the results for photon counts of 105 and 103. When
the photon count is lower, the likelihood term Eq. (3) flattens,
meaning longer posterior tails and more samples needed to
achieve good estimation performance. Again, HMC provides
the best results for a given computing time.

The sum of Poisson random variables is Poisson dis-

Fig. 3. Variance estimates versus the dimension of the re-
stored image. The error bars show the variation of the esti-
mates for 10 different runs of each algorithm. The true pa-
rameter value is denoted by the horizontal dashed line.

Fig. 4. Variance estimates versus the number of recorded pho-
tons. The error bars show the variation of the estimates for 10
different runs of each algorithm. The true parameter value is
denoted by the horizontal dashed line.
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tributed. Hence, binning the noisy image with a 2 × 2 pixels
window yields a 4 times increase in signal-to-noise ratio, at
the cost of lower high frequency information. Recent work in
the Poisson denoising literature has shown that lower scales
can add valuable information [18, 19]. We compared the
normalized mean squared error

NMSE =

∑N
n=1(zn − µ̂n)

2∑N
n=1 z

2
n

(13)

obtained by the HMC sampler for different downsampled
scales. In this experiment, we removed the forward operator
(i.e., the matrix A was set to the identity matrix) and fixed
the computing time to 300 seconds. The coarse scale results
were upsampled by simply assigning 1/4 of the estimated
intensity to each pixel in the finer scale. Table 2 shows the
NMSE of each scale from 102 photons to 5 105 photons. In
a very low-photon count scenario (less than 104 photons),
the estimates at lower scales perform better than at higher
ones, also requiring less time to converge. When the photon
number increases, the results are better at finer scales, as they
contain more high-frequency information.

photons/ p 16 32 64 128 256
102 14.1 16.4 29.7 67.62 200.7
103 10.9 10.7 12.08 16.48 47
104 7.5 6.7 6.5 7.3 10.7
2 104 6.9 5.9 5.4 5.8 7.9
5 104 6.5 5.2 4.5 4.4 6.5
7 104 6.4 5.0 4.1 3.9 4.5
5 105 6.0 4.3 2.9 2.2 2.0

Table 2. NMSEs at different scales (the image size is p× p).

5. CONCLUSION

This paper studied a Bayesian approach for image restora-
tion using low-photon count measurements. Six different
stochastic simulation algorithms were compared to compute
posterior statistics of interest, in particular the marginal pixel
mean and variance, for this image restoration problem. The
experiments performed with synthetic data showed that the
Hamiltonian Monte Carlo sampler provides better estimates
as the image size increases and the number of photon counts
decreases. These results are in agreement with the theoret-
ical scaling of the effective sample size [8] [10]. Finally,
we showed experimentally the trade-off between the avail-
able photon budget and the scale associated with the best
restoration. When the number of photon counts is very low
compared to the image size, downsampling the image can
yield better results using less computing time.
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