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Abstract—Brain-Computer Interface (BCI) is a technology that
utilizes brainwaves to link the brain with external machines for
either medical analysis, or to improve quality of life such as
control and communication for people affected with paralysis.
The performance of BCI systems depends on classification
accuracy, which influences the Information Transfer Rate. This
motivates researchers to improve their classification accuracy as
best possible. A bias problem in reporting accuracies by using
non-nested cross-validation methods was thought to increase
accuracy. The aim of this paper was to validate and quantify
such a concept by using a low-cost commercial EEG recorder to
classify visually evoking face vs scrambled pictures, and report
high accuracy using non-nested cross validation. The algorithm
employed Independent Component Analysis followed by feature
extraction with sample covariance matrices. The data were then
classified using Support Vector Machines. The accuracy was
tested with nested and non-nested cross-validation methods;
accuracies obtained were 63% and 76 %, respectively.

I. INTRODUCTION

Brain Computer Interface (BCI) is the technology that
utilizes brainwaves to link the brain with machines for var-
ious applications; including medical analysis, control of the
environment, communication for those who are affected with
partial or total paralysis, or any other directed purpose. BCIs
use electroencephalography (EEG) as a means of measuring
electrical activity in the brain via non-invasive electrodes that
require no surgery or long preparation [1]. The most common
BCI modalities are: Motor Imagery, P300-oddball, and Steady
State Visually Evoked Potentials (SSVEP). For these systems
to work efficiently, classification accuracies, often reported in
Area Under Curve (AUC) percentages, must be high enough
to maintain an acceptable level of Information Transfer Rate
(ITR). This led to great motivation to make every effort to
investigate accuracy improvements. The accuracy of visually
evoked BCIs hugely depends on several factors such as the
quality of the EEG recorder, experimental setup, nature of
stimuli, and algorithm development.

The use of research-grade EEG recorders enhances the accu-
racy significantly, compared to commercially inexpensive EEG
recorders due to differences in signal-to-noise ratios (SNRs).
One study tested the classification accuracy using Emotiv
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EPOC (commercial EEG) with 14 electrodes, and a Biosemi
headset (research-grade) with 32 electrodes employing the
oddball paradigm [2]. They have found the accuracy of the
32-channel Biosemi headset to be 88.5% and the Emotiv to
be 61.7%. Many other studies have examined performance of
commercial EEG recorders employing other visually evoked
BClIs like SSVEP and obtained similar results [3], [4].

A second important aspect is the type of visual stimuli
and area affected by different classes stimuli. For example,
many accuracies above 95% have been reported for the P300-
oddball and SSVEP paradigms [5], [3], [4]. Meanwhile, face
recognition based classification accuracies are rather inferior
to this, just as discussed in the following.

Another important aspect is the classification algorithm,
which is a multistage problem. Taking a Magnetoencephalog-
raphy (MEG) classification competition of face vs scrambled
images as a benchmark, which is a similar technology to
EEG, the three best classification accuracies reported for
subject-independent classification were 75%, 73%, and 71%,
respectively. The winner also reported a subject-dependent
classification accuracy of 86%. They utilized Event-Related
Potential (ERPs) sample covariance matrices as features, and
vectorization using tangent space along with a logistic regres-
sion (LR) classifier. The second place work involved down-
sampled filtered raw-data as features with LR and random-
forest (RF) classifiers combined. Whereas the third place
used Support Vector Machines (SVMs). The leader-board is
available via [6]. A more recent study [7] has reported the
use of non-linear SVMs and an RF classifier with XxXDAWN
spatial filtering and reported a 71% accuracy based on EEG
and 82% using MEG.

In this paper, we would like to shed light on another problem
that affects reported accuracies, which is the use of nested vs
non-nested cross-validation methods. This topic has generally
been explained in [8]. The non-nested cross-validation method
divides the data into training and testing parts, while nested
cross-validation divides the data into training, validation and
testing parts, forming two cross validation steps. The training
data allow the classifier to learn the parameters and tune them
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for testing the validation data, without access to test data. Non-
nested cross-validation makes use of testing data for validation
stage and report best accuracies, thereby increasing overall
accuracy.

The problem lies in the fact that it is difficult to know
which method was used unless clearly indicated creating an
unjustified gap between high accuracies (above 95%) and
medium accuracies (70-80%). In this study we will test the
possibility of obtaining robust accuracies using a low-cost
EEG recorder and visual perception. This will be compared
using nested and non-nested cross-validation methods, which
we hope will indicate that not all high accuracies reported
using low-cost recorders are actually accurate and feasible
for a real-time application. This will be achieved by using
the best algorithm methods from the literature and assessing
them with a dataset that was made public, then it will be
tested on our data using the aforementioned cross-validation
methods in the hopes it will enlighten the processes used by
other researchers and motivate them to clearly indicate their
reporting methodologies. We will also show pseudo-codes to
indicate how both methods are utilized based on the Python
platform.

This is not a new problem. It could be considered a fact
that in machine learning, reporting training accuracy (non-
nested cross-validation) results in higher but less generalizable
accuracies than nested cross-validation. However, in BCI ap-
plication we believe this is still used. Otherwise, the existence
of large gaps in reporting accuracies cannot be justified. The
aim here is to quantify this problem in practice using SVMs in
a visual BCI application and motivate researchers to progress
with it.

The overall methodology used in this paper was to design an
ERP recognition system in Python and collect data using a syn-
chronized Emotiv EPOC+. That will be followed by explaining
the classification algorithm consisting of preprocessing, feature
extraction and cross-validated classification using SVMs. The
results will include analysis of a dataset of faces vs. non-faces,
using different set-ups for comparison purposes. It will then
include assessing the data collected employing the commercial
EEG.

II. METHODOLOGY

Participants were requested to answer a list of questions by
staring at pictures. Their visual perception determined their
EEG behavior and this was utilized to enable communication.
The software posted each question by presenting a message
window that asked simple yes/no questions. The answer screen
would appear with two options Yes (left) and No (right). The
participant answered the question by staring at the cross sign
beneath the words Yes and No accordingly, see Figure la. A
timer represented by a red growing bar at the top of the screen
indicated when the pictures would appear. At the end of the
timer, two random images appeared where the cross signs were
located. One showed a face and the other was a scrambled
picture. Both were randomly chosen by the software; further,
the association of a face with a yes/no was randomized so
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the participant could not predict the picture presented. The
pictures were present for 500 ms and then were replaced by
pictures of circles, see Figure 1b. The database used for the
pictures was obtained from the dataset published by [9]. There
were 100 questions in total for each subject.

Is the sky blue?

flo/ol+~IgdE

(a) The software screenshot prior to stimulus

plolol+ - GE ) B D e

(b) The software screenshot during stimulus

Fig. 1: The software developed in Python to enable commu-
nication using visual perception

The device used in this experiment was an Emotiv EPOC+
with a sampling frequency of 128 Hz. Ten volunteers par-
ticipated. Experiments last from 30 to 45 minutes. Electrode
locations (using the 10-20 electrode location system) were
AF3, F7, F3, FCS, T7, P7, O1, O2, P8, T8, FC6, F4, F8,
and AF4 with references at P3 and P4 (CMS and DRL
respectively). Saline was employed to wet all electrodes. For
reference electrodes, smell- and color-free water-soluble based
gel was also used to ensure conductivity if the saline dried out.
The setup time took less than five minutes for each participant.
A synchronization circuit was needed to allow precise timings
to the Emotiv apparatus with channels T7 and T8 thats sends
triggers when the photos appeared on the screen. A battery-
based system was developed to provide a direct link to the
electrodes from the stimulus software, developed with Python.
Similar work has been reported by [10]. The software sent
a command using serial communication to a USB-connected
microcontroller (via a photodiode attached to the monitor) to
transmit a radio-frequency (RF) signal to the receiver attached
to the EEG recording machine. The receiving device which
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was enabled with RF communication triggered one of the
electrodes of the EEG machine (T8) with a number of pulses
of 330 pV for 8 ms, equivalent to 1 sample with a sample
frequency of 128 Hz. The ground of the circuit was connected
to another electrode (T7). Both electrodes were biased to the
DRL electrode using 500 k{2 resistors. In the case of a failure,
the resistors would limit any current flow to 9 pA. This limit
was less than 10 A for the CF Applied Part according to the
IEC 60601-1 requirements. The overall system is presented in
Figure 2.

Fig. 2: The setup for the system. The EEG recording ma-
chine along with the synchronization circuit inside a three-
dimensional (3D) printed enclosure. The thickness of the walls
is less than 1mm making the total weight low and not affecting
the balance of the headset

III. ALGORITHM

The classification algorithm consisted of three main com-
ponents; filtering, feature extraction and classification which
includes training and testing.

Raw data was fed into a 3rd order Butterworth band pass
filter of cutoff frequencies between 2 and 20 Hz. This is re-
quired to remove low frequencies such as offsets and undesired
high frequencies, like mains at 50 Hz. At this stage plotting the
averages of the trials data in most cases did not reveal any ERP
components, such as P300 or N170. More advanced filtering
was needed. Independent Components Analysis (ICA) was
then applied compute 12 independent components correspond-
ing to the 12 recording channels. Independent components
associated with visible ERPs were kept, either at the front
with positive potential (given the reference point was at P3)
and negative potentials at the occipital part the brain. The
remaining components were removed. The process was carried
out manually for all subjects. The noise was successfully
removed and ERPs could now be seen (see Figure 3).

The ERP covariances of the data were then calculated. This
resulted in a feature matrix of size £ x E for each trial,
where E/ = 12 is the number of electrodes. The covariances,
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Fig. 3: Shows the average trials for both face and non-face
trials using the average of four electrodes (P7, O1, O2, PS).

as discussed in [11], were calculated by firstly concatenating
each trial z; with the averages of each class p(1) and p(2):

p(1)
z; = |p(2)
z;
The spatial covariance matrix o; € R'2X!2 was therefore
defined as: )
g; = Niiii (1)

However, these features are in matrix form and need to
be converted into vector form. To do this we needed to
use Riemannian Geometry, which is explained in [12]. The
Riemannian distance for two covariance matrices o1 and oo,
representing classes 1 and 2, is defined by [13] as:

E
5(o1,02) =|| log(o Poa0r 2) =D log” A2 @)
e=1

where )\, , e = 1...E are the real eigenvalues of 01_1/20201_1/2
and F = 12 is the number of electrodes. Thus the Riemannian
mean of the I covariance matrices is the matrix minimizing
the sum of the squared Riemannian distances defined in [14]
as:

I
arg min Z 6%(0, o) 3)
7 =1

to feed the features to the classifier it is necessary to project
matrices in a vector Euclidean space, referred to as tangent
space, leading a covariance matrix of size £ X F to be
represented by vectors of dimension E(E +1)/2. In this case
E was 12.
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an SVM classifier was used. SVMs were explained thor-
oughly in [15]. Using a Radial Basis Function (RBF) kernel,
parameters conventionally known as C' and « needed tuning.
Parameter C represents the cost i.e. the classification surface
smoothness to compromise misclassification of training trials
to gain a simpler decision surface, where 7 represents the
impact of individual samples on choosing support vectors.
Tuning could be carried out in two ways that result in major
differences in reporting accuracies; nested and non-nested
cross-validation methods.

In nested cross-validation, the parameters are tuned using
the training data without access to the testing data. Unlike non-
nested cross-validation where the test data is used to optimize
the parameters, and report scores based on best accuracies. We
tested both methods and reported accuracies for comparison
purposes. The values of parameters of C' ranged from 1 to
1000, and ~ ranged from 0.0001 to 0.1, with 10 folds each.
The reported accuracy metric was in the Area Under the
Curve (AUC), which is a well-known technique and more
information on it could be found easily.

The pseudo code in Algorithm 1 describes one way for re-
porting cross-validation methods. Lines 2-5 indicate preparing
the data for classification. Line 6 implements a grid-search
method (based on Python) using 10-fold shuffle split of SVM.
Line 7 signifies the training of the machines using the grid-
search method. The difference lies in Line 8 where the non-
nested best accuracy of the grid search is reported as system
accuracy, whereas the nested methodology has an extra layer
of cross-validation method using 10 folds and reports average
accuracy.

Algorithm 1 Nested vs non-nested cross-validation methods

1: procedure GETACCURACY

2 cv + ShuffleSplit(n_splits=10)

3 X < data (trials,channels,samples)

y < labels

X_features < calculate features of X

model < GridSearchCV (estimator=SVM, cv)
model.fit(X,y)

non_nested score < model.best_score

nested score <— cross_val_score(model, X,y,cv)

R AN A

IV. RESULTS
A. Research-grade dataset validation

To test the algorithm and better analyze the original data,
nested cross-validation SVMs were applied to an exter-
nal dataset. This dataset was obtained from the OpenfMRI
database. Its accession number is ds000117. The dataset
included 16 subjects and used a total of 74 EEG electrodes and
306 MEG electrodes [9]. To properly confirm the algorithm,
the same 12 electrodes were also tested in the analysis using
nested cross-validation.

Table I shows the different accuracies obtained using differ-
ent setup electrodes. It shows that the best accuracies of 86%
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and 85% were obtained using the 74 EEG electrodes and 306
MEQG electrodes, respectively. Another column was added to
compare the same 12 electrodes used in the Emotiv EPOC+.
The test was also conducted using different number of training
trials to test the effect of having different experiment lengths;
100 (similar to the EPOC+ experiment), 200, and 300 to find
the point of accuracy convergence. The results demonstrated
that using 300 training trials the accuracy was 77%. Further,
using 200 training trials, the accuracy was 75% and using 100
training trials the accuracy was 70%. These results were used
as a benchmark for our system accuracy.

TABLE I: Average accuracies for different setups: EEG or
MEG (number of electrodes), and number of training trials .

Training Trials MEG (306) EEG (74) EEG (12)
300 85.72 86.02 77.39
200 81.48 83.28 75.27
100 69.26 77.37 70.44

B. Commercial-grade collected data

Table II lists the accuracies obtained by running the al-
gorithm for both the nested and non-nested cross-validation
methods. Non-nested cross validation suggests a large superi-
ority to nested cross-validation. The average accuracy for non-
nested cross-validation was 76% and the average for nested
cross-validation was 63%. The greatest difference was for
subjects 6 and 9 at an increase of 19%. The lowest increase
was for subject 8 at 6%.

TABLE II: Accuracies for different subjects.

Subject || Non-nested SVM || Nested SVM || Difference
1 0.70 0.56 0.14
2 0.75 0.61 0.13
3 0.86 0.77 0.09
4 0.76 0.68 0.08
5 0.76 0.60 0.16
6 0.85 0.67 0.19
7 0.64 0.55 0.09
8 0.74 0.68 0.06
9 0.78 0.59 0.19
10 0.74 0.59 0.15

Average 0.76 0.63 0.13

V. DISCUSSION

The algorithm accuracies for the dataset were similar to
those obtained by the winner at the competition for the same
dataset. Combining SVM with covariances resulted in similar
accuracies garnered by an LR classifier. Over-fitting of the
RBF kernel, owing to limitations in the number of trials
and less generalizable conditions, might become an advantage
if reporting non-nested cross-validation accuracies. However,
analysis of the non-nested classification of the research-
grade dataset was not included in this paper based on space
limitations. The number of electrodes affected the accuracy;
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306 MEG and 74 electrodes resulted in similar accuracies.
Reducing the number of electrodes to 12 diminished the
accuracy from 86% to 77%. This shows the benefit of machine
learning where more data, with localization and spatial filter-
ing, improves accuracy. In addition, the effect of the number of
training trials is significant. However, high cost is associated
with having large number of trials, including subjects and time.

The accuracy of the system is not as high as 95% as reported
by studies using P300 and SSVEP paradigms. This could
be caused by a number of factors such as the ERP pattern
differentiation between the target and non-target classes. The
face and non-face ERP patters are very similar to each other
when looking at N170 and P300 components. However, for
the oddball paradigm, the ERP patterns of the target class
have significant P300 components while there are no ERP
components in the non-target class. The same applies to
SSVEP where the frequencies are different for various stimuli
classes.

Accuracy obtained by research-grade EEG recorders is
expected to be superior to commercial EEG recorders. The al-
gorithm accuracy when tested on the dataset with the research-
grade EEG recorder resulted in an accuracy of 86% using a
nested cross-validation method. This, however, was obtained
by using 300 trials for training and 74 EEG electrodes. With
the same 12 electrodes, as in the Emotiv EPOC+ and a similar
number for training trials at 100 led to an accuracy of 70%,
which is 7% more than the data obtained by the Emotiv EEG
recorder of 63%. This difference is justified by the difference
of SNR between the recorders. However, low-cost easy-to-use
EEQG is also favorable when time funding resources are limited.

On the other hand, the non-nested classification accuracy
76% is higher than expected when compared with the same
number of training trials and electrodes using the research-
grade EEG. This indicates that it is possible to report high
accuracies with low-cost hardware and setup. The big differ-
ence in accuracies of the utilization of nested vs non-nested is
an reflection of the importance of assessment tools and their
implication in real-life application, where access to validation
data is limited to validation and cannot be used for reporting
accuracies.

VI. CONCLUSION

This paper analyzed different factors that affect accuracy
performances in visually evoked BCI systems. It focused on
the aspect of reporting accuracies by using nested vs. non-
nested cross-validation methods. To analyze the matter in more
detail, we collected face recognition EEG data associated with
looking at pictures of faces and scrambled images with a
synchronized commercial EEG recorder. It showed the possi-
bility of reporting relatively high accuracies with such low-cost

methods, respectively. The nested cross-validation accuracy of
63% was compared to obtaining 12 EEG electrodes from a
research-grade EEG that resulted in 70% accuracy. The non-
nested accuracy of 76% was thought to be higher that the
usual, which was accomplished by reporting bias. This raised
the question of whether all reported accuracies in the literature
obtained by either low-cost or research-grade EEG that were
of very high accuracy, were accurate representations of reality.
This paper hoped to encourage researchers to clearly indicate
their cross-validation methodology to reduce confusion caused
by reading different accuracies in the literature.
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