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Abstract—Most Advanced Driver Assistance Systems (ADAS)
or Autonomous Driving (AD) functions require the ability to
perceive the road and its elements around the ego-vehicle. The
precise localization of other road participants (e.g. vehicles,
pedestrians, traffic signs) is demanded at lane level, to enable
higher semantic analysis of the scene. This requires a lane
detection and modeling stage able to provide the number of
existing lanes, and their precise local geometry. The current trend
in computer vision is to use the full power of GPU technology
with deep learning-based detection methods, which requires
costly high-end platforms, and difficult the co-existence with
other heavy-processing functions (e.g. vehicle detection), specially
critical when considering a single platform processing multiple
cameras and Laser scanners. In this paper we propose an efficient
lane detection and modeling pipeline, composed of optimized
steps for segmentation, transformation, modeling, control and
tracking. The method is able to detect multiple lanes and their
curvature, in continuous function, with minimal processing power
requirements, thus enabling its implementation into low-cost
embedded platforms. Experimental results support our claims,
and demonstrate that the proposed method outperforms other
methods in the literature in computational cost, while keeping
good accuracy results for a variety of road types.

I. INTRODUCTION

It’s been at least two decades since the first effective lane
detection techniques appeared [1], starting a research line that
represented one of the first successful examples of computer
vision techniques applied to the automotive sector. How-
ever, during the following decade (2000-2010) this research
found only partial success in its deployment into commercial
systems, with the consolidation of Lane Departure Warning
Systems (LDWS). These LDWS, due to the poor HW capa-
bilities of the time, were limited to extremely simple methods
and constrained to basic detection of bright pixels at given
positions of the image. More advanced modeling techniques
[2][3][4], which required more computational resources, never
broke the research-to-industry gap [11].

The focus turned into detection of objects, and for the last
decade (2010-2018), the industry and scientific community
have produced enormous advances in HW/SW for object
detection, tracking and recognition, using single camera, stereo
set-ups and range sensors (e.g. Laser scanners). Specially
relevant is the revolution caused by the re-birth of Neural
Networks (i.e. Deep Learning) when applied on massive
parallel computing devices such as GPUs or FPGAs, and in
general, due to the rapid development of machine learning and

computer vision frameworks, boosted by investments from IT
companies (e.g. Google, NVIDIA, Intel, etc.).

As a result, in recent years (since 2015) more advanced
ADAS are being devised, which participate in the race towards
autonomous driving, for instance in the form of function-
specific mechanisms, such as Automatic Breaking, Automatic
Parking, Lane Keeping Systems, Lane-Level Navigation, etc.

Most, if not all, of these ADAS require now the review of
the old lane detection and modeling techniques, provided a rich
description of the road is needed to locate all those detected ve-
hicles and vulnerable road users (i.e. pedestrians, bikes) in the
semantic coordinate systems of a road/scene description. Also
navigation applications using digital maps get benefit from
camera-based lane modeling in order to compute image-to-
map alignment and generate accurate localization, improving
GNSS accuracy (which nowadays, using low-cost receivers,
still remain above meter-accuracy).

As a consequence, recent years have shown progress on
lane modeling, particularly using deep learning resources (e.g.
LaneNet from NVIDIA’s DriveWorks1), multi-sensor set-ups
[9], and exploiting advances in image segmentation with
transfer learning [10]. Results show extremely accurate and
robust detections.

Still, we argue that using deep learning for lane detection
and modeling represent a waste of resources which does not
really solve the problem, but transfer it into a number of other
domains: (i) to find a cost-effective inference GPU or FPGA-
enabled platform; (ii) to create or purchase a sufficiently
large annotated dataset; (iii) to jointly optimize the allocation
of computational resources for co-existing modules (such as
semantic segmentation, Lidar processing, GNSS or calibration
processes). None of the previous problems is trivial, and CPU-
only, light-weight lane detection seems to be a reasonable
proposal.

Considering the gathered experience on lane detection and
modeling by years of (previous-to-deep learning) techniques,
we have created a method that feeds from good practices [6],
successful architectures [5], and is composed of a number of
extremely efficient and effective steps required to provide a
robust lane detection, flexible multi-lane model, lane change
logic, auto-calibration, parameter learning and auto-assessment
with curvature and lane marking type information.

1https://developer.nvidia.com/driveworks
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Our approach can be deployed in almost any embedded
platform, as its computational cost is significantly lower than
other existing approaches, producing a range of 1-10 ms/frame
processing time for different tested platforms, while keeping
state-of-the-art quality and robustness.

II. PIPELINE OVERVIEW

The proposed pipeline is illustrated in Figure 1. Its design
has followed a number of principles: apply a single image
processing step, split processing in simple steps, remove pa-
rameterization by online learning, utilise calibration to operate
on a bird’s-eye view domain where to apply geometric con-
straints, and keep computational load as constant as possible.

One of the key aspects of the approach is the computation
of a homography transform between the original image and
a warped domain corresponding to a bird’s-eye view of the
road. Next sections discuss our approach to obtain such trans-
formation, keep its computation efficient, and its application
to simplify the geometric models of the lane.
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Fig. 1. Lane detection pipeline, highlighting image processing steps, data
processing and curvature analysis.

Next sections will detail each of the steps. In summary,
the input image is filtered to find pixels likely belonging to
lane markings, then, their positions are transformed into the
bird’s-eye view domain, where a stripe analysis is carried out
to group these pixels according to their proximity. Lateral
tracking is applied using parabolic fitting to stripes and voting
into an online accumulator. Curvature and lane marking type
analysis is applied at the last step, by finding the stripes which
fit to the lateral tracking results. The rest of the modules pro-
vide the required robustness: auto-calibration, auto-assessment
and reset functions.

III. LANE MARKING SEGMENTATION

We propose a row-level bump detection technique, which
is able to detect lane markings of any width. We define it as
the Dynamic Step Row Filter (DSRF), in comparison with the
Step Row Filter (SRF) proposed in [7].

The SRF is a variation of the classic top-hat filter [12], fa-
voring lane markings with similar positive-negative gradients.
The filter is applied at row level such that for each y-th row
of an image Ix,y with resolution W × H the SRF produces
filtered values {Fx}Wx=1:

Fx = 2Ix − Ix−τ + Ix+τ − |Ix−τ − Ix+τ | (1)

where τ is the step in the x-dimension used to compute the
differences. In SRF, τ is precomputed according to an expected
lane marking width, and its perspective variation with respect
to the horizon (τ linearly decreases to zero from the bottom
row to the horizon line).

In the proposed DSRF, instead of using a pre-defined τ
value, pairs of up and down slopes in intensity are found (i.e.
intensity variations above an intensity difference threshold T ),
with x-coordinates xl and xr, such that the values Fx for the
pixels in the range xl to xr are computed as:

Fx = 2Ix − Ixl−1 + Ixr+1 − |Ixl−1 − Ixr+1| (2)

Each found pair is then defined as p = (xl, xr, y, Fxm),
where xm is the middle position between xl and xr. Since
only Fxm

is required to characterize each pair, all the other
DSRF values for the range xl and xr can be ignored and not
computed. One advantage of DSRF over SRF is that all lane
markings are detected, and no expected width prior parameter
is required (see Fig. 2). Additionally, to further decrease
the computational load, not all image rows are filtered. The
rationale is that the perspective effect makes the lower part of
the image most abundant in redundant information, while far
distance is represented with few very valuable pixels.
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Fig. 2. Sample comparison of SRF and DSRF for a given row (y-axis is 8-bit
intensity level): SRF produces noisier results, while DSRF is able to produce
a cleaner output, closer to a binarized result.

In an attempt to suppress the impact of the perspec-
tive effect, many researchers have adopted the construction
of a bird’s-eye image (also known as Inverse Perspective
Mapping [1]), a warped image built using an image-to-road
homography, and then apply the filter on the transformed
domain. However, the construction of such image is itself
computational costly , and introduces its own distortion to the
available information, i.e. interpolation at this domain implies
far distance is represented with as many pixels as the close
distance, but with much less information.

So, to avoid this additional cost, it is better to apply all
image processing at the original domain, and then transform
the resulting points or geometric entities into the IPM domain
for further modeling. Row sampling at the original image can
be used to target a fixed number of rows to process, N , and
then keep the computational cost known and steady.
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Regularly sampling to select only some rows on either
the original domain or the IPM domain does not solve the
perspective problem either. Regular sampling in any domain
produces information which overlaps in the other domain, e.g.
in the extreme case all rows are filtered in the original domain,
a lot of resources are wasted analyzing bottom rows, since
many of them correspond to a single row at the IPM domain;
analogously, using all rows at the IPM domain produces
useless information at the far distance, which is interpolated
in this domain and correspond to only some rows close to the
horizon at the original domain.

We propose a hybrid approach, which consists on using
a non-regular sampling on the original domain, in a way a
single row is sampled from a group of adjacent rows which
correspond to the same row on the IPM domain. The result is
that the sampling step decreases from bottom to top, respecting
all or most of the rows corresponding to the far distance,
and sampling the closer regions in a way no overlapping is
produced at the IPM domain. The result is a perspective-
guided sampling approach, which ensures no resources are
wasted, and can be used to keep a fixed number of rows to be
computed. The rows to be analyzed can be obtained by first
defining a regular step on the original domain ∆y =

H−hy

N ,
where hy is the y-coordinate of the horizon. Iterating over
candidate rows yj = bhy+j∆yc, j = 0...N−1, and verifying
yj 6= yj−1 and y′j 6= y′j−1 where y′ is the corresponding y-
coordinate at the IPM domain.

IV. STRIPES COMPUTATION

Pairs p are transformed into the IPM domain, applying
the image-to-plane homography to each of its points. Then,
a connected-component analysis (CCA) is applied to group
pairs into stripes, S = {Sj}Sj=1, applying bottom-to-top
processing. Small gaps (i.e. missing pairs) are allowed, in
order to reconstruct stripes not correctly detected by the DSRF.

Additional filters are applied at stripe level: valid lane
markings should have homogeneous width, should not present
variations in second derivative, and should span a sufficiently
large longitudinal distance. Note that complex lane markings,
such as urban signs or text are correctly detected by the DSRF,
but filtered at this step to simplify the model fitting process.

V. LANE MODEL

The proposed approach divides the model into two parts:
lateral tracking, and curvature analysis. It follows the prin-
ciples expressed in [5], where Rao-Blackwellization splits
an inference problem into a linear and a non-linear part, to
simplify both steps. In our case, the division consists on
finding first the lateral position of lane markings, according
to robust, reliable information, and then use it as a basis in a
second step to estimate curvature (which is always less reliable
due to the very limited amount of information the images
contains about the far distance).

A. Lateral tracking

For each consolidated stripe, a parabolic fitting process
is applied to each stripe. A parabola can be described by
x = k1y

2 + k2y + k3. In order to prevent fitting solutions
which do not correspond to longitudinal lanes, we can include
the restriction that the parabola is tangent to the vertical
direction at the bottom row of the image, i.e. the first derivate
is zero at y = H . Therefore, the model is defined as
x = k1(y2 − 2Hy) + k3, which is a two-parameters model,
where we have applied the restriction as k2 = −2k1H .
Although this model is simpler than a fully three-parameters
parabola, it provides suitable results specially robust for short
stripes. A least-squares solution is applied using the points of
the stripe.

The computed parabola is used to determine the x-
coordinate at the bottom row in which the stripe hits. A 1D-
accumulator hi with equal number of bins as the width of the
IPM domain, is created where each stripe votes according to its
number of pairs at the hit position (plus a smoothing gaussian
kernel). A first step of temporal smoothness is applied, in
the form of a Exponential Weighted Mean Average (EWMA).
Each position of the accumulator is filtered with the following
EWMA expression:

h∗i,t = αh∗i,t−1 + (1− α)hi,t (3)

where hi,t is the measured value of the accumulator at the
i-th position, in instant t, while the symbol * denotes EWMA
filtered response. The value of alpha can be set to meet
some expected lateral motion dynamics of the vehicle, but
to simplify, we use α = 0.9 when the vehicle is driving
straightforward, and α = 0.5 when moving laterally.

Local peaks of h∗i,t are used to update the estimated position
of lane markings, L = {lk}Lk=1. In our implementation, we
use a fixed number of possible lane markings L = 8, which
corresponds to one central ego-lane and 3 lateral lanes at
each side (which is usually far more than necessary for usual
optics on forwards-looking cameras). Those lane markings not
associated to any peak enter into a lane-level sanity check, to
infer their position according to measured lane markings.

B. Curvature analysis

Curvature analysis is applied to stripes and computed lane
marking lateral positions to create a grid of control points
at the IPM domain (similar in concept to the approach de-
scribed in [8]). The grid is defined by a number R of equi-
distant heights in which the IPM is divided, and L points
corresponding to each lane marking. Let then the grid be
C = {Cr,l}R,Lr=1,l=1.

The lateral positions (at the bottom) of the lane markings
L are then used as starting points to analyze the stripes and
find an association between stripes S and lane markings. First,
an S × L matrix is built with the likelihood of each stripe to
correspond to a given lane marking according to the distance
di,k between the lane marking position and the lateral hit point
ot the stripe’s parabola at the bottom row:
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p(si, lk) = exp(−λdi,k) (4)

where si is the i-th stripe,and lk the k-th lane marking. The
parameter λ can be defined to ensure a certain restriction on
the likelihood: e.g. the likelihood decays to 0.1 for a distance
of one-third of the domain width, thus λ = log(0.1)

di,k
.

A 1-to-1 association is obtained first, to find long stripes
(those spanning all R control point heights) which can be
reliably associated to specific lane markings. If found, a
parabola fit is used to define the position of the control points
at different heights in the IPM domain.

Short stripes (corresponding to discontinuous lane mark-
ings) are less reliable: their parabolic fit is more sensitive
to detection noise and outliers. A second S′ × S′ matrix is
built (being S′ the number of short stripes) to represent the
likelihood of two stripes to belong to the same curve. For that
purpose, pairs of stripes are joined and their joint parabola is
computed. The fit error is used to produce a likelihood value.
Note that this matrix is triangular superior, and pairs of stripes
are only evaluated if one stripe is strictly above the other. That
limits the number of parabolic fits needed in the procedure.

Control points which have been defined from a stripe, are
declared as measured. The others are left as not-measured.
At this point inference steps are given, in order to define
as inferred those control points whose position can be in-
terpolated from measured ones (e.g. immediate superior and
inferior). This can be done applying lane-level logic, to ensure
reasonable shapes are produced (smooth curve, semi-constant
lane width, etc.).

Each lane marking has R control points either measured,
inferred, or not-measured. This information can be used to
determine its type. In this work we stay with two simple states:
continuous (lane markings with all control points measured),
and discontinuous (lane markings with some control points
measured). Lane markings with all control points remaining
as not-measured are set to be of unknown/unobserved type.

VI. IMPLEMENTATION

The proposed method has been implemented as a C++
library, using efficient C++11 principles. Calibration can be
injected to the application in a number of ways, for instance
providing a file of intrinsic and extrinsic parameters of the
projection matrix. Also, the rotation and translation of the
camera with respect to a given coordinate framework.

A. Lane marking segmentation

One of the key steps of the proposed approach is the DSRF
for lane marking segmentation. To evaluate its performance,
we have used the ROMA dataset [12], which is composed of
116 annotated images of road scenes which include variable
lightning conditions, varied types of context (highways, rural
areas, urban scenarios), and different levels of lane marking
complexity and visibility. The dataset is subdivided in three
categories: adverse light, high curvature and normal.

We have run SRF and DSRF against all the images in the
dataset, aggregating the results and spanning the binarization

threshold T from 1 to 255, in order to obtain the F-measure
curve for each algorithm. The results are shown in Fig. 3.
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Fig. 3. F-measure computed for the ROMA dataset, for algorithms SRF and
the proposed DSRF, spanning threshold T values from 0 to 255. Curves show
the results aggregated for the entire dataset, the adverse sub-set (labeled as
-A), curvature sub-set (-C), and normal (-N).

As we can see, the DSRF reaches better results than SRF in
all categories, quite good for the normal sub-dataset, reaching
F-measures of 0.8, while staying at 0.6 for the adverse light
subset, which is composed by images where lane markings
are imaged with reflections and strong shadows.

One significant advantage of DSRF with respect to SRF is
its speed. As explained in section III, DSRF is designed to
quickly advance through pixels seeking for up-down slopes,
computing the SRF response only for found pairs. As a result,
we have observed DSRF is 20%− 30% faster than SRF.

B. Subjective results

On the top of the image segmentation provided by the
SRF, the method gets robust by applying the successive steps
of Stripe creation and filtering at the IPM domain, lateral
position tracking, and curvature analysis. In our experiments,
the method is able to determine accurately the presence of the
ego-lane, and in most cases, also lateral lanes.

The stripe analysis helps identifying which pairs actually
correspond to lane markings, and which are outliers or other
sort of road paintings (see Fig. 4). The accumulation on the
histogram h∗i is used to manage lane-level logic, such as lane
changes (upon identification, the information is shifted in the
model to continue modeling the ego-lane and up to 3 lateral
lanes at both sides), lane merges and lane splits.

Curvature is built on the top of the other steps, and naturally
is the one subject to more uncertainty. Curvature is modeled
from small bits of information (from pixels in the distance).
The proposed method is able to weight the contribution of
these pixels to the model fit in order to accurately determine
the curvature of each lane marking. The usage of control
points helps to determine the view distance, i.e. the maximum
distance at which the lane marking can be extrapolated (see
Fig. 4 bottom-right).

Additional examples of behaviour of the proposed method,
in different situations can be found in our website2.

2https://vicomtech.box.com/v/laneDetectionSamples
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TABLE I
AVERAGE PROCESSING TIME (MS/FRAME) FOR THE TEST PLATFORMS.

Total DSRF Stripes Lateral Curvature
Std. PC 2.05 0.71 0.49 0.29 0.53
Emb. PC 3.75 0.60 0.86 0.52 1.74

C. Performance
We have tested the processing time of the method in two

platforms: (1) Standard PC, Intel Core i5-6500 @3.2 GHz,
8 GB RAM; and (2) embedded PC with Jetson TX2, Quad
ARM A57, 8 GB RAM. Table I shows the processing time of
the method and the main steps of the algorithm.

As we can see, the proposed method is a light-weight
algorithm, which consumes only about 13% of CPU resources
of the standard PC, and 50% of the embedded platform,
which leaves plenty of room to run other processes in parallel.
Additionally, the processing time is well below (2.05 ms/frame
and 3.78 ms/frame for the standard and embedded PC) the
real-time limit of 40 ms/frame for 25 fps cameras.

Fig. 4. Example visualization of the proposed lane detection and modeling
method (upper image). Icons show the corresponding confidence of each
detected lane, the type of lane markings and radius of curvature. The bottom
group illustrate the algorithm steps: top-left shows the detected pairs using
the DSRF, top-right is the bird’s-eye view of the created Stripes; bottom-left
show the histogram used for lateral tracking; and bottom-right depicts the
control points and the estimated curvature for each lane marking.

VII. CONCLUSIONS

In this paper we have presented a lane detection and
modeling method, which has been devised to work efficiently

for in-vehicle platforms, to keep its computational load low
enough to leave room for heavier algorithms such as deep
learning object detection in the same processor.

The main contributions are: novel lane marking segmen-
tation approach (DSRF), with a dynamic step filter which
can detect lane markings of any width, plus an efficient
row sampling technique which significantly reduces the com-
putational load. The lane model uses constrained parabolic
fitting based on stripe building and association. Lane logic
is used to associate stripes to lane markings and these to
lanes, allowing to detect maneouvres such as lane change, lane
merge, lane split, and also define the level of curvature of lanes
(individually) plus the type of lane marking (continuous and
discontinuous).

Future works will include a full analysis of the computa-
tional cost of this approach while running in parallel with other
methods, specially deep learning-based, in order to evaluate
how different in-vehicle platforms distribute the load between
CPU and GPU processors.
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