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Abstract—In this work, we propose new methods for informa-
tion fusion and tracking in direction of arrival (DOA) estimation
by utilizing an optimal mass transport framework. Sensor array
measurements in DOA estimation may not be consistent due to
misalignments and calibration errors. By using optimal mass
transport as a notion of distance for combining the information
obtained from all the sensor arrays, we obtain an approach that
can prevent aliasing and is robust to array misalignments. For
the case of sequential tracking, the proposed method updates the
DOA estimate using the new measurements and an optimal mass
transport prior. In the case of sensor fusion, information from
several, individual, sensor arrays is combined using a barycenter
formulation of optimal mass transport.

Index Terms—Optimal mass transport, Spectral estimation,
Direction of arrival, Sensor fusion, Target tracking

I. INTRODUCTION

The problem of direction of arrival (DOA) estimation is
ubiquitous in the field of signal processing, with applications
in, e.g., communications, radar, and sonar [1]–[3]. Often
formulated as a (spatial) spectral estimation problem, the
spatial directions of wave-emitting sources are determined by
studying the spatial distribution of spectral power impinging
on an array of sensors. Given its significance, a multitude of
approaches have been developed to address different aspects
and formulations of the DOA estimation problem, including
data-adaptive beamforming approaches [4], [5] and subspace-
based methods, such as MUSIC [6] and ESPRIT [7]. More re-
cently, different solutions that allow for calibration errors have
been examined (see, e.g., [8]–[11]). Another focus has been
on methods that seek a suitable spectrum consistent with the
estimated covariance matrix, often with some regularization,
such as maximum entropy [3], [12], [13], or more recently
approaches based on L1-regularization, exploiting sparsity in
the spectrum [14].

Inherent in DOA estimation is the phenomenon of spatial
ambiguity, i.e., several DOAs may be consistent with the
observed covariance matrix. This is, for example, the case in
scenarios where the array is a uniform linear array (ULA),
with sensor spacing larger than half of the impinging wave’s
wavelength [3]. Similarly, for a ULA, DOA estimation is
limited to directions in one of the half-planes defined by the
array. Apart from alleviating this by considering other array
geometries, there have been methods proposed that consider
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measurements obtained from several individual arrays; by
matching peaks in spectra estimated from the individual arrays,
the correct DOAs may under some conditions be identified and
erroneous spectral peaks discarded [15]. However, in order
to perform the matching, the individual spectra may not be
too poorly resolved, preventing application of such methods
to scenarios such as, e.g., estimation of end-fire DOAs for
settings with ULAs.

In this work, we consider the problem of combining DOA
measurements, obtained from several individual arrays or from
the same array at different time points, in order to alleviate
spatial ambiguity. To this end, we consider the sets of spectra
consistent with the observed covariance matrices, and then
select the spectrum for which the sum of the distances to
those sets is minimized. As a notion of distance, we use
the optimal mass transport framework (see, e.g., [16]). The
optimal transport problem has earlier been used as a distance
measure between spectra [17]–[19], and has been shown to
be robust against misalignments [20]. Herein, we demonstrate
that the proposed method allows for a flexible formulation for
combining covariance matrices from several different arrays
in order to form estimates of the spatial spectrum, alleviating
the problem of spectral ambiguity also for cases when the
spectrum estimates corresponding to the individual arrays
suffer in resolution.

II. BACKGROUND

A. Direction of arrival estimation

In order to introduce notation, we begin by briefly reviewing
the DOA problem, which strives to estimate directions and
magnitudes of a set of planar waves that simultaneously
arrive at an area containing the sensors. Here, the sensors
measure the superposition of the waves and the spatial char-
acteristics of the sensor array dictate ambiguity and sen-
sitivity to certain directions. To model this, let the array
geometry be specified by the sensor positions, xk ∈ Rd,
for k = 1, . . . , n. The incoming planar wave arrive from
the directions S = {u ∈ Rd |‖u‖2 = 1}, e.g., represented in
spherical coordinates as

u(θ) =

(
cos(θ)
sin(θ)

)
, u(θ) =

cos(θ1) sin(θ2)
sin(θ1) sin(θ2)

cos(θ2)


for d = 2 and d = 3, respectively. The spacial distribution of
the incoming waves can thus be represented by a non-negative
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function or measure Φ on S, denoted the power spectrum.
Letting λ denote the wavelength of the impinging waves, the
covariance matrix of the measurements is (see, e.g., [21])

R =

∫
S
a(u)Φ(u)a(u)Hds(u), (1)

where a(u) is the array manifold vector [2, Chapter 2.2], i.e.,

a(u) =
(
e2πiuT x1/λ · · · e2πiuT xn/λ

)T
, (2)

with (·)T denoting the transpose, and ds(u) the normalized
surface element.1 It is worth noting that although any covari-
ance matrix R is positive semidefinite, there may, for a given
positive semidefinite matrix R, not exist a representing spec-
trum Φ. For example, a matrix that is not Toeplitz structured
cannot be a covariance matrix corresponding to a ULA. Let the
linear mapping from non-negative spectra on S to covariance
matrices be Γ :M+(S)→Mn, being defined as

Γ(Φ) ,
∫
S
a(u)Φ(u)a(u)Hds(u). (3)

Then, a positive semidefinite matrix R is a valid covariance for
a given spatial array if and only if R = Γ(Φ) for some non-
negative spectrum Φ ∈ M+(S). The set of such covariances
can also be shown to be the closed convex cone{

R : R =
N∑
i=1

a(ui)a(ui)
Hmi, ui ∈ S,mi ≥ 0

}
. (4)

Specific classes of solutions Φ to (1), such as the exponential
family or rational family, may be parameterized and solved
explicitly [21], [22]. In this work, we will use a non-parametric
approach of representing all solutions to (1) in order solve
optimization problem that contain, e.g., regularization terms
and optimal mass transport costs.

B. Optimal mass transport

The optimal mass transport problem is the problem of
finding a transport plan between two given mass distributions
with minimal total cost [16]. Consider two non-negative
distributions Φ0 and Φ1 on the underlying space S with
equal total mass. A transport plan is a non-negative measure
M ∈ M+(S2), where M(u0, u1) represents the amount of
mass transported from location u0 to location u1, i.e., any
feasible transport plan satisfies

Φ0(u0) =

∫
S
M(u0, u1)ds(u1), (5)

Φ1(u1) =

∫
S
M(u0, u1)ds(u0). (6)

Let the cost of moving a unit mass from location u0 to location
u1 be given by c(u0, u1). Then, the cost of the transport plan
M is given by

Ψ(M) ,
∫
S2

c(u0, u1)M(u0, u1)ds(u0)ds(u1). (7)

1That is, ds(u) is the normalized Haar measure on S.

The optimal mass transport problem is thus to find the feasible
transport plan from Φ0 to Φ1 with minimal transportation cost,
i.e.,

T (Φ0,Φ1) , min
M∈M+(S2)

Ψ(M) (8)

subject to Φ0(u0) =

∫
S
M(u0, u1)ds(u1)

Φ1(u1) =

∫
S
M(u0, u1)ds(u0).

Here, the minimal cost T (Φ0,Φ1) will be used as a measure
of similarity between the two mass distributions Φ0 and Φ1.
The idea of utilizing the optimal mass transport cost as a
distance measure has been used, e.g., for defining metrics on
the space of power spectra [17], clustering in fundamental
frequency estimation [23], and the corresponding transport
plan has been used for tracking and morphing signals with
smoothly varying spectral content [18], [24]. It may be noted
that, due to the marginal constraints, the distance measure T
is only defined for spectra of the same total mass. However, T
may be generalized in order to allow for unbalanced masses
[17], [25]. In the numerical section of this work, we will
consider the cost fucntion c(u0, u1) = ‖u0 − u1‖22.

III. TRACKING AND SENSOR FUSION
VIA OPTIMAL MASS TRANSPORT

A. DOA estimation and tracking

Consider the problem of tracking several slowly moving
targets, i.e., of forming estimates of time-varying DOAs in
a sequential fashion. Specifically, assume that approximate
information of the spatial spectrum at an earlier time instance
is available in the form of a spectrum Φprior and that new
data, in the form of the sensor array covariance matrix, R, is
received. Then, an estimate of the spatial spectrum may be
formed as the spectrum in the set of spectra consistent with R
that minimizes the distance to the prior Φprior in the optimal
mass transport sense (cf. [26]). That is, the estimated spatial
spectrum Φ solves

minimize
Φ∈M+(S)

T (Φprior,Φ) subject to Γ(Φ) = R. (9)

Here, the optimal mass transport cost T enforces slow vari-
ations in the spectral distribution of power, corresponding to
smoothly moving targets. As noted above, a given covariance
matrix R may not have a spectral representation, a scenario
that may arise in the presence of calibration errors in the array
manifold a(u). In order to allow for such situations, i.e., to
increase robustness, one may introduce small perturbations to
the consistency constraint. This may be formulated as

minimize
Φ∈M+(S),∆

T (Φprior,Φ) + γ‖∆‖2F

subject to Γ(Φ) = R+ ∆,
(10)

where γ > 0 is a user-defined regularization parameter,
penalizing the magnitude of the introduced perturbation matrix
∆, as measured by the Frobenius norm.
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Fig. 1. Trajectories obtained from sequential DOA estimation.

B. Sensor fusion
Consider the case of DOA estimation in a scenario where

the wave-emitting sources impinge on a set of J arrays, with
array manifold vectors aj(u), for u ∈ S, giving rise to
covariance matrices Rj , j = 1, 2, . . . , J . Assuming knowledge
of the individual array geometries, i.e., aj , but not of the
common geometry, we then aim to form an estimate of
the underlying, spatial spectrum, given estimates of the J
covariance matrices. Note that the ideal approach would be
to concatenate the different arrays to a large array and then
form the spectral estimates. However, in some scenarios, the
global geometry may be unavailable, prohibiting calibration of
the large array, prompting the need of fusing information from
the individual arrays. Similarly, when information from several
arrays is combined at a central processing node, one will strive
to minimize the information transmitted to the central node.
Here, we propose to utilize all the available data, in the form
of covariance matrix estimates, by forming the estimates of
the DOAs using the (not necessarily unique) spectrum that is
closest to all the observed covariance matrices in optimal mass
transport sense. Then, the sought spectrum, Φ, corresponding
to the desired DOAs, may be estimated as the solution to the
convex barycenter problem

minimize
Φ∈M+(S),Φj∈M+(S)

J∑
j=1

T (Φ,Φj) (11)

subject to Γj(Φj) = Rj , j = 1, 2, . . . , J,

where T (Φ,Φj) is the transport distance defined in (8) and
where Γj is the function mapping the spectrum to the covari-
ance matrix of array j, i.e.,

Γj(Φ) =

∫
S
aj(u)Φ(u)aj(u)Hds(u). (12)

As in (10), one may extend the formulation to allow for inexact
covariance estimates, due to, e.g., sensor noise or calibration
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Fig. 2. Final DOA estimates after 20 time steps.

errors, by allowing perturbations in the covariances according
to

minimize
Φ∈M+(S),Φj∈M+(S)

∆j

J∑
j=1

T (Φ,Φj) + γ
J∑
j=1

‖∆j‖2F (13)

subject to Γj(Φj) = Rj + ∆j , j = 1, 2, . . . , J.

Note that the obtained optimization problem is still convex.

IV. NUMERICAL RESULTS

A. DOA estimation and tracking

We initially illustrate the proposed method’s ability to
track smoothly moving targets. Consider an L-shaped array
consisting of nine sensors with equidistant spacing, equal to
the signal wavelength λ, along the array. Using this setup,
we consider the problem of tracking five smoothly moving
targets during 20 time instances using (10). Specifically, we
provide the proposed method with an accurate prior spectrum
Φprior that is used in the estimation of the spectrum in the first
time instance. In each step, the previously estimated spectrum
serves as the prior spectrum for the next time instance. The
sensor measurements are corrupted by spatially and temporally
white Gaussian noise of variance 0.1 and each covariance
is then estimated using the sample covariance estimate from
200 snapshots (cf. [27]). The realized target trajectories are
shown in Figure 1, along with estimates obtained using
the proposed method. Also included are estimates obtained
using a Carathéodory-Fejér-Pisarenko (CFP) [28]–[30] and a
Maximum Entropy (ME) method [12], [27], neither of which
employ any prior information.

As may be seen from Figure 1, the proposed estimator
is able to accurately track the targets, whereas the CFP and
ME estimators suffer from the spectral ambiguity inherent in
estimating a spectrum from a finite covariance matrix estimate,
resulting in both erroneous peaks in the obtained spectra as
well as spectral leakage. Figure 2 displays the target locations
at the last time instance, together with the spectral estimates

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1633



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

first array

second array

target DOAs

zero angle

Fig. 3. Array and DOA setting for the sensor fusion scenario.

obtained from the proposed method as well as the CFP and ME
estimates. As can be seen, the CFP estimate contains several
spurious peaks. It may be noted that the proposed method is
superior in estimating both the location and the power of the
signal sources.

B. Sensor fusion

Proceeding, we consider a sensor fusion scenario with two
separate ULAs, both consisting of 5 sensors, and three sources
impinging on the arrays, as illustrated in Figure 3, where the
unit of the axes is the signal wavelength. The three sources are
modelled as uncorrelated Gaussian processes with variances
0.5, 0.7, and 1, respectively. Adding spatially and temporally
white Gaussian sensor noise of variance 0.1, we evaluate the
performance of the proposed sensor fusion formulation in
equation (13) using 100 Monte Carlo simulations. In each
simulation, we perturb the location of each sensor slightly by
adding zero-mean, Gaussian distributed numbers with standard
deviation corresponding to 1% of the nominal sensor spacing
in both the x- and y-directions, and generate 100 snapshots of
the sources impinging on the arrays, from which estimates of
the covariance matrices for the two arrays are formed using
the sample covariance estimate. Note that the corresponding
operators Γj , j = 1, 2, are defined using the assumed ULA
structure of the arrays as seen in Figure 3, i.e., there will
be calibration errors due to the perturbation of the sensor
locations.

Figure 4 displays the estimates obtained from one of the
realizations. As can be seen, the proposed estimator is able to
identify the three different DOAs, without having any prior
information of the number of sources. Note also that the
estimate also contains some small peaks, corresponding to the
sensor noise. As comparison, we have also included estimates
obtained using the Capon estimator for each individual array.
Here, it should be noted that the individual Capon estimates, as
expected, display erroneous peaks of power, due to the spatial
ambiguity caused by the geometry of the arrays. Interestingly,
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Fig. 4. Obtained DOA spectra from one instance of the sensor fusion scenario.

Fig. 5. Obtained DOA spectra from 100 instances of the sensor fusion
scenario.

the peaks of the two Capon estimates only coincide well for
one of the DOAs, indicating that a peak matching approach
such as [15] would not succeed in identifying the correct
number of sources, let alone their locations. The results
from 100 Monte Carlo simulations, superimposed in the same
plot, are shown in Figure 5. It may be noted that high-power
estimates are consistently concentrated to the DOAs of the
three sources.

V. CONCLUSIONS

In this work, we have presented a framework for perform-
ing tracking and information fusion in direction of arrival
estimation scenarios. Utilizing the concept of optimal mass
transport as a notion of distance between power spectra, we
have proposed convex optimization criteria allowing for the
tracking of slowly varying spatial spectra, as well as combin-
ing measurements from individual sensor arrays. The proposed
methods have been shown to alleviate spatial ambiguity caused
by the array geometry, and also allow for perturbations to the
nominal sensor positions.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1634



REFERENCES

[1] H. Krim and M. Viberg, “Two Decades of Array Signal Processing
Research,” IEEE Signal Process. Mag., pp. 67–94, July 1996.

[2] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part
IV, Optimum Array Processing, John Wiley and Sons, Inc., 2002.

[3] P. Stoica and R. Moses, Spectral Analysis of Signals, Prentice Hall,
Upper Saddle River, N.J., 2005.

[4] J. Capon, “High Resolution Frequency Wave Number Spectrum Anal-
ysis,” Proc. IEEE, vol. 57, pp. 1408–1418, 1969.

[5] A. Jakobsson and P. Stoica, “On the Forward-Backward Spatial APES,”
Signal Processing, vol. 86, pp. 710–715, 2006.

[6] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
in Proceedings of RADC Spectrum Estimation Workshop, 1979, pp. 243–
258.

[7] R. Roy and T. Kailath, “ESPRIT – Estimation of Signal Parameters via
Rotational Invariance Techniques,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, July 1989.

[8] P. Stoica, Z. Wang, and J. Li, “Robust Capon Beamforming,” IEEE
Signal Process. Lett., vol. 10, no. 6, pp. 172–175, June 2003.

[9] R. G. Lorenz and S. Boyd, “Robust Minimum Variance Beamforming,”
IEEE Trans. Signal Process., vol. 53, no. 5, pp. 1684–1696, May 2005.
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[20] J. Adler, A. Ringh, O. Öktem, and J. Karlsson, “Learning to solve inverse
problems using Wasserstein loss,” arXiv preprint arXiv:1710.10898,
2017.

[21] T. T. Georgiou, “Solution of the general moment problem via a one-
parameter imbedding,” IEEE Trans. Autom. Control, vol. 50, no. 6, pp.
811–826, 2005.

[22] J. Karlsson, A Lindquist, and A. Ringh, “The multidimensional moment
problem with complexity constraint,” Integral equations and operator
theory, vol. 84, no. 3, pp. 395–418, 2016.

[23] F. Elvander, S. I. Adalbjörnsson, J. Karlsson, and A. Jakobsson, “Using
Optimal Transport for Estimating Inharmonic Pitch Signals,” in 42nd
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, New
Orleans, LA, USA, March 5-9 2017, pp. 331–335.

[24] X. Jiang, Z. Q. Luo, and T. T. Georgiou, “Geometric Methods for
Spectral Analysis,” IEEE Trans. Signal Process., vol. 60, no. 3, pp.
1064–1074, March 2012.
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