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Abstract—Detecting the presence of speakers and suitably
localize them in indoor environments undoubtedly represent two
important tasks in the speech processing community. Several
algorithms have been proposed for Voice Activity Detection
(VAD) and Speaker LOCalization (SLOC) so far, while their
accomplishment by means of a joint integrated model has not
received much attention. In particular, no studies focused on
cooperative exploitation of VAD and SLOC information by means
of machine learning have been conducted, up to the authors’
knowledge. That is why the authors propose in this work a
data driven approach for joint speech detection and speaker
localization, relying on Convolutional Neural Network (CNN)
which simultaneously process LogMel and GCC-PHAT Patterns
features. The proposed algorithm is compared with a two-stage
model composed by the cascade of a neural network (NN) based
VAD and an NN based SLOC, discussed in previous authors’
contributions. Computer simulations, accomplished against the
DIRHA dataset addressing a multi-room acoustic environment,
show that the proposed method allows to achieve a remarkable
relative reduction of speech activity detection error equal to 33%
compared to the original NN based VAD. Moreover, the overall
localization accuracy is improved as well, by employing the joint
model as speech detector and the standard neural SLOC system
in cascade.

I. INTRODUCTION

Nowadays, in many engineering systems commonly inte-
grated in our life, the extraction and processing of contextual
information coming from multimedia signals is widely used. In
many applications, the speech utterances emitted by people in
the environment under study often constitute one of the most
representative information sources in this sense, and diverse
speech processing algorithms can be employed on purpose, in
dependence on the specific tasks under investigation.

The focus in this work is on Voice Activity Detection (VAD)
and Speaker LOCalization (SLOC). The first one plays a
fundamental role in several scenarios, such as mobile phone
communication, echo cancellation, and speech recognition.
Similarly, localization algorithms deserve attention in the
development of different tasks, as monaural or binaural models
based on the human hearing system [1], or the interaction
between human and robots [2].

Different techniques have been proposed in the literature to
tackle the voice activity detection problem in indoor environ-
ments. Among the most recent ones, an approach recognizing
a reference anchor word with the help of mean subtraction is
discussed in [3], the interaction between VADs based on the
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SNR estimate is investigated in [4]. Deep neural networks have
been employed in [5], in which the authors proposed a neural
network based VAD, focusing on multi-stage optimization.
Similarly, Convolutional Neural Networks (CNN) with 3-D
kernels have been used in [6]. At the same time, several
approaches have been proposed for localizing a speaker in
closed environments. In [7], the localization algorithm takes
advantage of the signal energy measure, Direction Of Arrival
of the audio signal is estimated in [8], while [9] employs
the Steered-Response Power Phase Transform (SRP-PHAT).
In addition, the SLOC problem has been recently faced by
means of neural networks in [10], [11], especially with a focus
on CNN [2], [12]-[14].

In the last years, the simultaneous detection and localization
of a speaker has been addressed in different works. Commonly,
VAD and SLOC are disposed as a cascade [15]-[18] or a
parallel [19] configuration. Up to the authors’ knowledge,
only two contributions investigate the cooperation between
VAD and SLOC. One is the approach proposed in [17], in
which an ensemble integration of speaker localization and
statistical speech detection data in domestic environments is
implemented. The second technique jointly performs VAD and
SLOC [20] by employing a modified version of SRP-PHAT
algorithm.

However, a single data-driven model for joint speaker detec-
tion and localization has never been investigated. Therefore,
this work is intended to simultaneously exploit both VAD
and SLOC data in order to improve the overall performance,
both in terms of speech detection and speaker localization.
Deep neural networks (DNN) are employed on purpose, for
two main reasons. First, DNN have already shown remarkable
performance on the two separate tasks, as mentioned above.
Second, a neural architecture with its multiple inputs and
outputs allows to easily make use of VAD and SLOC feature
data and decision variable values.

In this work, a classic cascade configuration is firstly devel-
oped, where a neural SLOC is trained by means of an Oracle
VAD selecting only the speech portions of audio signals. A real
VAD is employed for evaluating the SLOC performance. In
details, speaker localization error is computed on true positive
speech frames detected by the VAD. Subsequently, a new
model based on CNN, simultaneously operating as detector
and localizer exploiting standard VAD and SLOC features, is
proposed. The training of this network is performed by using
both speech and non-speech signals.

For the proposed study, the multi-room scenario already
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addressed in the authors’ previous contribution [14] is taken
as reference, in order to have a solid experimental background
for evaluating the proposed approach. Accomplished computer
simulations show that the joint model allows to remarkably
improve the VAD performance, with respect to the original
non-cooperative solution. On the other side, the localization
ability is enhanced when the standard neural network based
SLOC is piloted with the proposed joint model operating as
VAD.

The paper is organized as follows. In Section II the proposed
algorithm is described. The computer simulation setup is
presented in Section III, whereas the experimental results are
reported in Section IV. Section V concludes the work.

II. PROPOSED METHOD

In this section, the comparative model is presented in the
first place, being the cascade of the so-called Neural VAD
and Neural SLOC, already proposed by the authors in their
previous works [6] [14]. Then, the description of the new
proposed method named Joint VAD-SLOC Model is given.
Finally, the shared details of two models are briefly illustrated.

A. Cascade Model

This model is made by the cascade of the Neural VAD and
Neural SLOC. Speech detection is performed by the former. It
consists in a CNN fed by LogMel features extracted from all
the available microphones. Training and testing of Neural VAD
is accomplished over speech and non speech data acquired by
means of environmental microphones. The Neural SLOC is
formed by a CNN processing GCC-PHAT Patterns. Localizing
a speaker is dealt with as a 2-D problem, where the height of
the speaker from the floor is not considered. The 2-D speaker
coordinates defined as ( , ¥) are directly predicted by the
CNN. An Oracle VAD selecting only speech frames is used
during the training phase of the Neural SLOC, as in [14]. In
computer simulations, as discussed later on, the Neural SLOC
has been tested using only speech frames detected by Oracle
VAD and by Neural VAD, i.e., considering all the available
speech frames in the dataset and the true positive predictions
of the Neural VAD, respectively.

B. Joint VAD-SLOC Model

In this neural model, the simultaneous detection of speech
frames and localization of speaker position is performed.
As discussed in the introductory section, the objective is to
exploit the synergy between these two tasks to improve their
performance, and a full data-driven technique was identified as
the most viable solution to implement the idea. Several options
have been investigated, and the most performing one is the
model depicted in Fig. 1. It consists in a single CNN with two
separate stacks of convolutional layers separately processing
LogMel and GCC-PHAT Patterns features, followed by a
common set of standard feed-forward layers. The network
ends with three outputs, being the voice activity prediction
and the two speaker position coordinates. In details, as it
will be described in Section II-D, also the two coordinates
are eligible to represent the speech/ non-speech condition. A
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Figure 1 The Convolutional Neural Network employed for the Joint VAD-SLOC Model.
Pooling layers are absent. The outputs of the network are three neurons, one for speech
detection and the other two for speaker localization.

specific threshold needs to be used on purpose, as discussed
in Section II-E. This last strategy has been adopted, indeed.
Moreover, since both speech and non-speech frames are used
to train the model, the authors propose to label the speaker
position in the non speech condition as a physical location
outside the considered room, as similarly done in [20].

C. Features

1) GCC-PHAT Patterns: This kind of feature aims to
estimate the time difference occurring between the two signals
captured by a microphone pair in presence of a sound event.
GCC-PHAT Patterns features is the result of the frequency
domain cross correlation of these two signals. Only adjacent
microphones pairs are chosen for features extraction. Plus, due
to the spatial disposition of the microphones, the first 51 values
of the cross correlation are selected. Signals are sampled at
16 kHz, while frame size and hop size are set to 30 ms and
10ms respectively. Mean and variance normalization is ap-
plied. The authors have already employed GCC-PHAT Patterns
in [14] for the SLOC task.

2) LogMel: This feature set is widely employed in com-
putational audio processing. The authors used it in [6] for
the VAD task. The LogMel features are calculated as follows:
the signal frame goes through the Fourier transform, 40 mel-
band filters are applied and, finally, the logarithm of the power
spectrum is calculated for each mel-band. Frame size is chosen
as 25ms and hop size 10ms.

3) Temporal Context: An improvement of CNN perfor-
mance has been observed in authors’ previous work [14] by
extending the processed input data including also past and
future occurrences. The same approach has been used here as
well. Two are the parameters to set in this case, i.e., context
and strides. The first indicates the total number of frames
considered as input instead of the single actual frame, where
an equal number of past and future frames is selected. The
latter pilots the selection of previous and future frames.

D. Convolutional Neural Network

CNN has encountered a large success in computational
audio processing applications in the recent years. The authors
used this kind of network in all neural models addressed in
this work, i.e., the Neural VAD, the Neural SLOC and the
Joint VAD-SLOC Model. Typically, a 2-D convolution over the
input matrix is performed by means of the CNN convolutional
layers, generating a set of feature maps, then processed by
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a stack of neuronal dense layers. As mentioned above, in
the proposed Joint VAD-SLOC Model, the final outputs of
the convolutional layers processing LogMel and GCC-PHAT
Patterns are concatenated and then processed by the following
layers of neurons.

1) Speech and Non-Speech Labelling: In the case of Neural
VAD, a 0 or 1 label is used for speech/non-speech classifica-
tion. For the Neural SLOC, following the authors’ previous
work [14], the neural network outputs represent the coordi-
nates (x,) of the speaker inside the room, which range in
[0, 1], when speech frames are processed. The three outputs
of the Joint VAD-SLOC Model are the combination of Neural
VAD and Neural SLOC outputs. Nonetheless, while the label
for VAD prediction is kept boolean as Neural VAD, the non
speech frames lack of a label for the coordinates outputs.
The two (x, %) coordinates are labeled as —1 for non-speech
frames.

2) Activation Function: For the Neural VAD and Neural
SLOC case studies, the ReLU activation is employed. The
need of a specific activation function for the Joint VAD-SLOC
Model rises, due to localization labels ranging in [—1,1]. The
Hard Tanh nonlinearity has been chosen, which acts as f(x) =
2 in [—1,1] and saturates to -1 and 1 out of this range.

E. Post Processing

1) VAD: A threshold is applied for discriminating speech
and non-speech. In the case of the Neural VAD, its appli-
cation is straightforward. Differently, when the localization
coordinates are considered for VAD decision as described
in Section II-B, the application of threshold becomes a 2-D
problem. The authors propose to use a straight line in the
position coordinate space as threshold, as depicted in Fig. 2.
Subsequently, a standard Hangover technique is applied to the
VAD prediction values. It employs a counter K: the actual
frame is non speech if and only if the previous (K —1) frames
are non speech. K is set equal to 8.

¥
1

(0,0) X
L7 1

non speech

-1

Figure 2 The application of the 2-D threshold. The square box top view of the room,
where the walls are normalized in the range [0,1]. Speech is expected to be predicted in
that box. The thin red line is the threshold. If prediction lies in the red region then it is
labeled as non speech, otherwise it is considered as speech.

2) SLOC: The smoothing of the predicted coordinates is
carried out by means of a moving average filter. The window
size of the filter is set equal to 5.

III. EXPERIMENTAL SETUP
A. DIRHA Dataset

The DIRHA dataset has been used in this study [21].
It consists of multiple recordings acquired by means of 40
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microphones installed in the walls and the ceilings of a five
rooms apartment, as depicted in Fig. 3. A distance of 50cm
occurs between two close microphones. The Real and the
Simulated subsets compose the DIRHA dataset; the proposed
approach is tested against the latter, which consists of 80
scenes lasting a minute each, with a total amount of speech
equal to 23.6 minutes. More details are provided in [21].
Simulations address two of the five rooms, which are the
Living Room and the Kitchen. These rooms are chosen since
most of the speech events occurs there, plus a higher number
of microphones is available.
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[ X ) /

{b) Kitchen

{¢) Livingroom

Figure 3 The map of the apartment used for the DIRHA project (a). Figures (b) and (c)
show the considered rooms, where the thick black dots are the installed microphones.

1) Microphones Selection: A fixed set of microphones is
employed in this study. For the Neural VAD, all the available
microphones are considered, from which LogMel features are
evaluated. Regarding the Neural SLOC, GCC-PHAT Patterns
are extracted from all the couples of adjacent microphones
installed in the wall and the ceiling array (i.e., microphones
pairs distancing 50 cm). The central microphones of the ceiling
arrays (KA6, LA6) are excluded. As mentioned above, the
Joint VAD-SLOC Model relies on LogMel and GCC-PHAT
Patterns. The first are extracted from a reduced set of micro-
phones which are K1R, K2L, K3C, KAS for the kitchen and
L1C, L2R, L3L, L4R, LAS for the living room. For the latter,
the same strategy adopted for the Neural SLOC is followed.

B. Evaluation Metrics

Two main groups of metrics are employed, one for detection
and the other for localization. VAD evaluation relies on the
false alarm rate (FA), the deletion rate (Del) and the overall
speech activity detection (SAD) defined as follows:

sp nsp
where Ngei, Nypq, Ngp and Ny, are the total number of
deletions (false negative), false alarms (false positive), speech
and non-speech frames, respectively. The term 5 = N, 5, /Ngp
plays the role of regulator due to class unbalancing.

Localization accuracy is given in terms of Root Mean
Square Error (RMSE) and P.,,. RMSE is defined as:

N
Yo"V (X — Xret,i)? + (i — reri)?
Nror

RMSE =

@

where y; and 1; are the i-th network outputs, Xrei and
Urer,; are the i-th reference speaker coordinates, and Nror
is the total number of frames. The second metric is defined
as P.,. = Npinvg/Nror, where Npryg is the number of
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frames localized with RMS inferior than 500 mm. Localization
performance is assessed only in correspondence of speech
frames.

C. Neural Networks details

1) Implementation and Training: All algorithms have been
implemented in the Python language using Keras [22] as deep
learning library. All the experiments were performed on a
computer equipped with a 6-core Intel i7, 32 GB of RAM and
two Nvidia GTX 970, 4 GB of RAM graphic cards. The CNN
training is performed by using standard backpropagation with
the Adam optimizer [23]; plus, early stopping and variable
learning rate are employed. Details are reported in Table 1.

2) Cross Validation: A 10-fold cross validation is em-
ployed, with 8 folds used of training, one for validation and
one for testing. Thus, the 80 scenes of the DIRHA Simulated
dataset are grouped in 10 subsets of 8 scenes each. The scene
selection procedure here employed aims to balance the amount
of speech between the 10 subsets. In particular, the scene with
the maximum amount of speech is selected and allocated into
the first subset, then discarded. The next scene is selected
in the same way, and allocated into the second subset, and
so forth. The speech balancing operated by this data folds
organization has shown to improve the training convergence
behavior of the neural models.

The CNN hyper-parameters optimization is executed by
random search; a total of more than 30 neural architectures
is investigated for each model. Context and strides have been
chosen a priori, as follows: context is set to 15 in all cases,
while strides is equal to 4 for Neural VAD, 5 for Neural SLOC
and 3 for the Joint VAD-SLOC Model.

Training Early Learning

Epochs Stopping Rate

Neural VAD 30 10 le—5
Neural SLOC 500 50 2.5e—4
Joint VAD-SLOC Model 500 50 2.5e—4

Table I CNN Training Parameters

IV. RESULTS AND DISCUSSION

The CNNs employed in the two rooms for the Neural VAD
are similar, counting two layers of 128 kernels sized 3 x 3,
succeeded by two layers of neurons, being 1024, 1024 for the
kitchen and 1024, 256 for the living room. ReL.U is employed
as activation. All results discussed in this section are obtained
by choosing the best threshold in the different addressed case
studies. In Table II the results of the Neural VAD are reported.

| Kitchen | Living Room | Average

SAD (%) 56 438 52
DEL (%) 6.8 5.7 6.2
FA (%) 45 4.0 42

Table II Results of the Neural VAD applied on the two considered rooms of the dataset.

The Neural SLOC employs a CNN consisting of 128 kernels
sized 7 x 7 for the kitchen and 5 x 5 for the living room. For
each room, the convolutional layers are followed by two layers
composed of 1024, 256 units. The Neural SLOC is tested on
speech detected by an Oracle VAD or by Neural VAD. When
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the latter is employed, the Neural SLOC accuracy increases,
since it is tested against a reduced set of speech (true positive),
instead of all the available speech. This means that the Neural
VAD fails in detecting frames in which the Neural SLOC is
less accurate.

Kitchen | Living Room | Average
. RMS (mm) 332 359 345
Oracle VAD ‘ Pror (%) 76 77 76
RMS (mm) 317 337 327
Neural VAD Pror (%) 77 73 77

Table IIT Performance of the Neural SLOC. Its test takes place over all the speech of the
dataset detected by the Oracle VAD, or against the speech detected by the Neural VAD
reported in Table II, i.e. only for true positive.

The Joint VAD-SLOC Model employs the same CNN
topology for the two rooms. Two separated stacks of two con-
volutional layers process LogMel and GCC-PHAT Patterns,
respectively. Each one of the four layer is composed by 64
kernels of size 5 x 5. Three fully-connected layers respectively
with 1024, 1024, 256 units and Hard Tanh activation function
follow the convolutional layers. The two coordinates are used
for speech detection by using the threshold described in Sec-
tion II-E; the VAD prediction is rejected being less accurate.
In Table IV the performance of the Joint VAD-SLOC Model
are shown for detection and localization. The proposed method
acts as a remarkable detector, outperforming the Neural VAD.
On the other hand, the joint speech and non-speech training
results more challenging in terms of localization, leading to a
less accurate localizer compared to the Neural SLOC trained
with the sole speech frames coming from the Oracle VAD.

Kitchen | Living Room | Average
SAD (%) 3.8 3.1 35
DEL (%) 4.5 3.9 42
FA (%) 3.1 2.4 2.8
RMS (mm) 601 657 629
Peor (%) 64 68 66

Table IV Results for the Joint VAD-SLOC Model.

Finally, a comparison for the average results of the three
models is reported in Table V. The most performing con-
figuration is obtained using the Joint VAD-SLOC Model as
speech detector with the Neural SLOC in cascade. In terms
of detection, comparing the Neural VAD and the Joint VAD-
SLOC Model, SAD is decreased from 5.2% to 3.5% when the
latter is employed, corresponding to a relative reduction equal
to 33%. In addition, a lower SAD means as well that a higher
number of true positive (+3.1%) is detected by the Joint VAD-
SLOC Model. Then, when assessing the localization accuracy
of the Neural SLOC on speech frames detected by the Joint
VAD-SLOC Model (Table Vb), a P, relative improvement of
+1.3% is observed against the Neural SLOC tested on speech
frames detected by Neural VAD. The average RMS reduces
from 329 mm to 318 mm, i.e., a relative reduction of 3.34%.

Nevertheless, in Table III it was previously observed that
the accuracy of the Neural SLOC increases when less true
positive are detected, i.e., the Neural VAD is employed instead
of the Oracle VAD. Hence, when detection is performed by
the Joint VAD-SLOC Model rather than the Neural VAD, it
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is reasonable to expect a decay of localization performance.
Interestingly, the opposite takes place. This result shows that
the Neural VAD fails to detect a subset of speech which is
straightforward to localize for the Neural SLOC. Conversely,
the Joint VAD-SLOC Model detects those speech frames,
thus proving that the proposed model is able to cooperatively
exploit detection and localization data.

Neural Joint
Detection | "y | VAD-SLOC
Model
SAD (%) 5.2 3.5
DEL (%) 6.2 42
FA (%) 4.2 2.8
(@
Joint
. Neural Neural
Localization SLOC* VAD-SLOC sLoct
Model
RMS (mm) 327 629 318
PCO’I‘ (%) 77 66 78
(b)

Table V Comparison of the two proposed models. The shown results are averaged
between the two considered rooms. In (a) the comparison in terms of detection. (b)
shows localization performances. Neural SLOC™ means the localizer operating on the
speech frames detected by Neural VAD, whereas Neural sLoct operates on the speech
frames detected by Joint VAD-SLOC Model.

V. CONCLUSION

The joint speech detection and speaker localization problem
is addressed in this work. The authors aim to cooperatively ex-
ploit VAD and SLOC data by means of a data-driven approach,
in order to improve the overall performance of the system. The
proposed model, namely Joint VAD-SLOC Model, consists in
a 3 outputs CNN processing LogMel and GCC-PHAT Patterns
features. The model training makes use of non-speech frames,
which requires the inclusion of a new label representing the
localization of absent speakers. Computer simulations have
been performed by considering a multi-room acoustic scenario
and the DIRHA dataset has been used on purpose. In terms
of speech detection, the Joint VAD-SLOC Model is compared
with the original Neural VAD system, already proposed by the
authors, leading to a relative reduction of average SAD error
equal to 33%. The cascade of the Joint VAD-SLOC Model
used as VAD with the Neural SLOC has been evaluated in
terms of localization performance. The cascade configuration
leads to a 2.7% relative improvement in terms of RMSE
compared to the Neural SLOC. The obtained results thus
confirm the effectiveness of the proposed idea.

Future works will be targeted to the improvement of local-
ization accuracy of the Joint VAD-SLOC Model, by employing
new specific features and augmenting the available speech
frames in the original dataset. Moreover, the generalization
of the proposed model when applied to diverse acoustic
environments will be investigated.
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