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ABSTRACT
The emergence of efficient algorithms in variational and

Bayesian frameworks braught significant advances to the field
of inverse problems. However, such problems remain chal-
lenging when the observation operator is not perfectly known.
In this paper we propose a Bayesian Plug-and-Play (PP) algo-
rithm for solving a wide range of inverse problems where the
signal/image is sparse in the original domain and the obser-
vation operator has to be estimated. The principle consists of
plugging the prior considered for the target observation opera-
tor and keep using the same algorithm. The proposed method
relies on a generic proximal non-smooth sampling scheme.
This genericity makes the proposed algorithm novel in the
sense that it can be used to solve a wide range or inverse prob-
lems. Our method is illustrated on a deblurring problem with
unknown blur operator where promising results are obtained.

Index Terms— MCMC, ns-HMC, proximity operator,
myope inverse problems

1. INTRODUCTION

The inverse problem literature shows continuous develop-
ments in finding the best estimation methods for many im-
age processing applications including denoising, restoration
and deconvolution. These developments are mainly due to
the emergence of a new generation of variational [1–4] and
Bayesian [5–8] optimization algorithms. These algorithms
have been used to solve various inverse problems like image
deconvolution [7, 9, 10] or reconstruction [11–14]. When the
observation operator is not perfectly known, the problem be-
comes myope and requests specific algorithms that have been
investigated for medical imaging [15–17], astronomy [18]
or remote sensing [19]. Generally speaking, estimating both
the target signal and the observation operator directly from
the data, in addition to the regularization hyperparameters
is a difficult task. Moreover, convergence issues can limit
the interest of some methods like those based on alternating
minimization. More recently, the inverse problem literature
has faced the emergence of a new generation of regularization
algorithm called Plug-and-Play (PP). The concept is to plug
any denoiser that can be used within the algorithm steps. This
has raised the issue of convergence guarantees, which means

that this new research area is still looking for well established
algorithms that enjoy solid theoretical guarantees [20, 21].
In this paper, we propose a Bayesian PP algorithm that al-
lows solving inverse problems where the observation oper-
ator is also unknown. In order to design a fully automatic
method, a Bayesian model is adopted to build a hierarchi-
cal Bayesian model. The main contribution of this paper
lies in the genericity of the proposed algorithm in the sense
that the user has only to plug the prior adopted to model the
observation operator. The proposed algorithm also enjoys
good convergence properties inherited from the convergence
guarantees of Markov chains. Indeed, the properties of the
observation operator can dramatically change from an in-
verse problem to another. This generally implies big dif-
ferences between Bayesian models developed to solve each
problem. For instance, the observation operator in parallel
magnetic resonance imaging is complex-valued [12], while
the point spread function (PSF) for two photon microscopy
is real positive [22]. Using the recently proposed general
non-smooth Hamiltonian Monte Carlo (ns-HMC) [23, 24]
sampling scheme, the sampling of the observation operator
can be done in the same way for a wide range of inverse
problems, provided that the adopted prior belongs to the
family of exponential probability density functions. The
proposed method is therefore applicable even for non-linear
inverse problems with possibly high-dimensional observa-
tion operators for which standard schemes suffer from a high
computational cost and poor convergence speed. Moreover,
if other efficient sampling strategies such as standard HMC
[6] or Langevin-based [25] are used, they cannot be applied
to priors with non-smooth energies, which can be done with
the proposed method.
As regards the target signal, we limit our focus (without
loss of generality) to inverse problems where the target sig-
nal/image is sparse in the original domain. A Bernoulli-
Laplace model is used to model this sparsity [26]. We also
consider problems for which the acquisition noise is Gaussian
for illustration purpose.
The rest of the paper is organized as follows. Section 2 de-
scribes the problem formulation. In Section 3 we detail the
adopted hierarchical Bayesian model. The PP algorithm in-
vestigated in this work is described in Section 4. Section 5
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evaluates the performance of the proposed algorithm for im-
age deconvolution. Conclusions and future work are finally
reported in Section 6.

2. PROBLEM FORMULATION

Let x ∈ RN+ be the target signal (or vectorized image) which
has to be recovered from an observation y ∈ RN . This ob-
servation is defined as a perturbation of x by an observation
operator K ∈ Rk×k and an additive Gaussian noise n with
variance σ2

n. The observation model can therefore be summa-
rized as

y = T (K,x) + n (1)

where T (·, ·) denotes the possibly non-linear function that
links the observation operator K to the target signal x. For
linear inverse problems, this function is simply expressed as
T (K,x) = Kx. Since such a problem is generally ill-posed,
regularization can help to recover a stable solution through
using adequate prior information. In this paper, we handle
a particular family of ill-posed inverse problems where the
observation operator K is not perfectly known. Specifically,
we handle myope problems where the target signal is esti-
mated from a vague knowledge about the observation oper-
ator. Moreover, we adopt a Bayesian framework in order to
design a fully automatic approach where the model parame-
ters and hyperparameters are directly estimated from the data.

3. HIERARCHICAL BAYESIAN MODEL

Following a probabilistic approach, the target and observed
signals (resp. x and y) are assumed to be realizations of ran-
dom vectors (resp. X and Y ). The core of our method will be
to characterize the probability distribution of X|Y , by con-
sidering a parametric probabilistic model and by estimating
the associated hyperparameters.

3.1. Likelihood

Since the observation noise is additive and Gaussian with
variance σ2

n, the model likelihood can be expressed as

f(y|x, σ2
n) =

(
1

2πσ2
n

)N/2
exp

(
− ‖y − T (K,x)‖

2
2

2σ2
n

)
(2)

where ‖.‖2 is the Euclidean norm.

3.2. Priors

In our model, the unknown parameters are gathered in the
unknown vector θ = {x,K, σ2

n}.
Prior for σ2

n

In order to use a non-informative prior for σ2
n while ensuring

positive values, a Jeffrey’s prior is considered for σ2
n defined

as [5]

f(σ2
n) ∝

1

σ2
n

1R+(σ2
n) (3)

where 1R+ is the indicator function on R+, i.e., 1R+(ξ) = 1
if ξ ∈ R+ and 0 otherwise.

Prior for x
We assume that the signal coefficients xi are a priori inde-
pendent. The prior distribution for x can be written as

f(x|ω, λ) =
N∏
i=1

f(xi|ω, λ). (4)

In this paper we focus on a category of inverse problems
where the target signal/image is sparse in the original space.
In order to inforce sparse real valued signals, we consider a
Bernoulli-Laplace prior for each xi as in [26], defined by

f(xi|ω, λ) = (1− ω)δ(xi) +
ω

2λ
exp

(
−|xi|

λ

)
(5)

where δ(.) is the Dirac delta function, λ > 0 is the parame-
ter of the Laplace distribution, and w ∈ [0, 1] is a parameter
weighting the contribution of the non-zero signal coefficients.
Note that for positive real-valued signals, an exponential dis-
tribution can be used instead of the Laplace one in (5) akin to
[27]. It is worth noticing that this model can still be used for
signals that are sparse in some transform domain.
Prior for K
For myope inverse problems, the observation operator is not
perfectly known. In this paper, we consider the generic case
where no accurate knowledge about the observation operator
is available, and where only a prior information can be defined
as a member of an exponential family, i.e.,

f(K|ϕ) = C(ϕ) exp
(
− g(K, ϕ)

)
, (6)

where ϕ is the set of involved hyperparameters.

3.3. Hyperpriors

The model hyperparameters are gathered in the vector Φ =
{λ, ω, ϕ}. As already used in a number of recent works [26,
27], a non-informative version (by setting α = β = 10−3) of
the inverse gamma distribution IG(λ|α, β) is used for λ.
As regards the weight parameter ω, we simply consider a uni-
form prior on the interval [0, 1] denoted as ω ∼ U[0,1](ω). A
more informative version can also be used if further informa-
tion is available for ω. Finally, for the hyperparameter ϕ, an
appropriate prior has to be set according to the problem.

4. PLUG-AND-PLAY ALGORITHM

Adopting a maximum a posteriori (MAP) strategy to estimate
both the parameter and hyperparameter vectors θ and Φ, we
combine the model likelihood, priors and hyperpriors in order
to derive the joint posterior distribution of {θ,Φ} that can be
expressed as

f(θ,Φ|y, α, β) ∝ f(y|θ)f(θ|Φ)f(Φ|α, β), (7)
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which can be reformulated in a detailed version as

f(θ,Φ|y, α, β) ∝
(

1

σ2
n

)N/2
exp

(
− ‖y − T (K,x)‖

2
2

2σ2
n

)
×

N∏
i=1

[
(1− ω)δ(xi) +

ω

2λ
exp

(
−|xi|

λ

)]
× 1

σ2
n

1R+(σ2
n)× U[0,1](ω)× C(ϕ) exp

(
− g(K, ϕ)

)
. (8)

In order to handle the posterior in (8) which has a com-
plicated form, a Gibbs sampler is built following many re-
cent works [5, 8, 28]. This sampler is based on sequential
iterations of sampling according to the conditional distri-
butions f(x|y, ω, λ,K, σ2

n), f(σ2
n|y,x,K), f(K|ϕ,y,x),

f(λ|x, α, β), f(ω|x) and f(ϕ|K).
The sampling steps that have to be used for x, ω, σ2

n and λ can
be found in many studies including [26,27]. For the hyperpa-
rameter vector ϕ, the conditional distributions to sample from
have to be derived based on the likelihood and the adopted
priors.
The conditional distribution of the observation operator K
can be expressed as

f(K|ϕ,y,x) ∝ exp
(
−Eϕ,σ2

n
(K)
)

(9)

where Eϕ,σ2
n
(K) = −g(K, ϕ)− ‖y−T (K,x)‖22

2σ2
n

is the energy of
the conditional posterior in (9).
We propose here a sampling scheme that allows K to be sam-
pled for all possible exponential priors. Specifically, we pro-
pose to use a Metropolis-Hastings (MH) -based move for this
sampling. However, to bypass the difficulties due for instance
to the large size of the operator, we resort to a non-smooth
Hamiltonian Monte Carlo (ns-HMC) scheme recently inves-
tigated in [6, 23, 24]. It has been established in the recent
literature that ns-HMC allows us to efficiently sample multi-
dimensional distributions with high acceptance ratios in com-
parison to the standard MH algorithm. We recall here that
the standard ns-HMC relies on Hamiltonian dynamics to sam-
ple from the target distribution f(K|ϕ,y,x) and extends the
standard HMC algorithm by resorting to the concept of prox-
imity operator [29]. This scheme has recently been general-
ized by performing a Bayesian calculation of the target energy
proximity operator [24]. In this paper, we use this principle
with the constructed hierarchical Bayesian model to design a
generic PP Bayesian regularization algorithm. This algorithm
can be configurated according to the used prior for the obser-
vation operator by setting the energy function g inEϕ,σ2

n
. The

resulting Gibbs sampler is summarized in Algorithm 1. Af-
ter convergence, Algorithm 1 provides chains of coefficients
sampled according to the target parameters and hyperparam-
eters. These chains can be used to compute an MMSE (mini-
mum mean square error) estimator (after discarding the sam-
ples corresponding to the burn-in period) for x̂ and K̂, in ad-
dition to the hyperparameters λ̂, σ̂2

n, ω̂ and ϕ̂.

5. APPLICATION TO IMAGE DECONVOLUTION

In this section we apply the proposed algorithm to a myope
image deconvolution problem. We first set the prior model of
the PSF as

f(K|K, σ2
k) ∝

(
1

2πσ2
k

)k2/2
exp

(
−||K − K||

2
2

2σ2
k

)
(10)

whereK is an approximation of the PSF that could be a priori
estimated or calibrated, and σ2

k is the prior variance. The pro-
posed PP algorithm can therefore be configurated by setting
g(K) = ||K−K||22

2σ2
k

in (6).

Using this prior, and assuming that K is fixed, the hyperpa-
rameter vector ϕ reduces to the hyperparameter σ2

k, for which
a Jeffrey’s prior can be set akin to σ2

n. The conditional poste-
rior of σ2

k can therefore be expressed as

σ2
k|K ∼ IG

(
σ2
k|N/2, ||K − K||22

)
. (11)

Algorithm 1: Proposed Plug-and-Play algorithm.

- Initialize with some x(0) and K(0,0);
- Set the iteration number r = 0, Lf and ε;
- Compute P0 = proxEϕ,σ2n (K)

(K(0,0)) using the

Bayesian algorithm in [24, Algorithm 2];
while not convergence do

- Sample σ2
n according to f(σ2

n|y,x,K);
- Sample ϕ according to f(ϕ|K);
- Sample λ according to f(λ|x, α, β).;
- Sample ω according to f(ω|x).;
- Sample x according to f(x|y, ω, λ,K, σ2

n).;
- Sample K according to f(K|ϕ,y,x) as follows
begin

* Sample q(r,0) ∼ N (0, IN );
* Compute q(r,

1
2 ε) =

q(r,0) − ε
2

[
2K(r−1,0) −K(0,0) − P0)

]
;

* Compute K(r,ε) = K(r−1,0) + εq(r,
1
2 ε);

for lf = 1 to Lf − 1 do
• Compute q(r,(lf+

1
2 )ε) =

q(r,lf ε) − ε
2

[
2K(r,lf ε) −K(0,0) − P0

]
;

• Compute
K(r,(lf+1)ε) = K(r,lf ε) + εq(r,(lf+

1
2 )ε);

end
* Compute q(r,(Lf+

1
2 )ε) =

q(r,Lf ε) − ε
2

[
2K(r,Lf ε) −K(0,0) − P0

]
;

* Apply the MH acceptation rule to (K∗, q∗)
with q∗ = q(r,εLf ) and K∗ = K(r,εLf );

end
end

The following sections illustrate the deconvolution results
obtained for synthetic and real data.
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5.1. Simulated data

In this section, a reference image x0 ∈ R32×32 is used to
simulate a blurred observation using a Gaussian PSF of size
3 × 3 and a Gaussian noise of variance σ2

n = 1. The ground
truth and observed images are displayed in Fig. 1.

Ground truth Observation: SNR = 3.77 dB

Fig. 1. Ground truth and observed images.

As initialization, the observed image and a uniform PSF
have been used for the target image and the observation oper-
ator, respectively.
Fig. 2 illustrates the deblurred images using the proposed
method (a), the blind maximum likelihood (b) [30], regular-
ized filter (c) [31] and Lucy-Richardson (d) [32] deconvolu-
tions. A visual inspection of the obtained images shows that
the proposed method provides the lowest blur level with re-
spect to the other methods. Some quantitative results in terms
of signal to noise ratio (SNR) and structural similarity (SSIM)
values are reported in Tab. 1. These values demonstrate the
good performance of the proposed method providing an ac-
curate image that best fits the ground truth (see Fig. 2(a). The
estimated and actual PSFs are illustrated in Fig. 3. The SNR
value of the estimated PSF with respect to the ground truth
is also provided to indicate the good estimation precision of
our method. Regarding the computational time, 100 iterations
were enough to reach convergence within 60 seconds.

(a) Proposed method (b) Maximum Likelihood

(c) Regularized filter (d) Lucy-Richardson

Fig. 2. Deblurred images using (a) our method, (b) blind maximum likeli-
hood, (c) regularized filter and (d) Lucy-Richardson deconvolutions.

Table 1. SNR (dB) and SSIM for the competing methods.
Prop. meth. Blind M. L. Reg. filter L.-R.

SNR 24.58 4.02 12.45 15.31
SSIM 0.978 0.586 0.914 0.941

Ground truth Estimation: SNR = 36.33 dB

Fig. 3. Ground truth and estimated PSF.

5.2. Two-photon microscopy data
In this section, deblurring of two-photon microscopy data
is performed using the proposed method. Two-photon mi-
croscopy [22] is among the most recent cell imaging tech-
niques. Due to the deep penetration level, the noise level is
generally lower that single photon-based microscopy. How-
ever, the collected images still suffer from a high blur level.
The observed 3D data is of size 221 × 247 × 14, acquired
with 5 channels, 14 slices and 50 frames. Fig. 4(a) displays a
2D 50× 50 patch that has been deblurred using the proposed
method. The deblurred image is displayed in Fig. 4(b), in
addition to the deblurred images using the blind maximum
likelihood Fig. 4(c) and Lucy-Richardson Fig. 4(d) methods.
The sparsity levels evaluated using the `0 pseudo-norm are
also reported in Fig. 4. These values clearly indicate that
the proposed method provides sparser estimation, which is an
interesting property.

(a) Observation: ‖x̂‖0 = 2601 (b) Prop. method: ‖x̂‖0 = 1482

(c) M. L.: ‖x̂‖0 = 2445 (d) L.-R.: ‖x̂‖0 = 2374

Fig. 4. (a) Observed and deburred images using (b) the proposed method,
(c) blind maximum likelihood, and (d) Lucy-Richardson deconvolutions.

6. CONCLUSION

In this paper, we proposed a Bayesian Plug and Play algo-
rithm for solving sparse inverse problems where the target
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signal/image is sparse in the original domain, and where the
observation operator is not perfectly known. The main nov-
elty of the proposed algorithm is that it can be applied to a
wide set of inverse problems and has simply to be configu-
rated by setting the energy function of the adopted prior on
the observation operator. The efficiency of this algorithm, es-
pecially for high-dimensional observation operators is due to
the use of the general ns-HMC sampling. Results obtained af-
ter applying our algorithm to an image deconvolution problem
demonstrate its ability to accurately recover the target image
in addition to a clean version of the observation operator.
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