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Abstract—The performance of speech beamformers relies on a
good estimation of the relative transfer function (RTF) between
the captured clean speech at each microphone. Most of the
proposed RTF estimators make assumptions about the clean
speech statistics or need a joint estimation of the RTF and the
signal statistics. In this work we propose a minimum mean square
error (MMSE) estimation of the RTF in an extended Kalman
filter (eKF) framework. Our method exploits the knowledge
about the RTF and noise statistics with no assumptions about
the clean speech statistics. The proposed approach is evaluated
when employed in combination with minimum variance distor-
tionless response (MVDR) beamforming in a dual-microphone
smartphone. To this end, a database of simulated dual-channel
noisy speech recordings on a smartphone was used. Experimental
results show that our approach achieves the most accurate RTF
estimates among the evaluated methods, yielding less speech
distortion and better intelligibility while competitive perceptual
quality performance is obtained.

Index Terms—Relative Transfer Function, Extended Kalman
Filter, Beamforming, Dual-microphone, Smartphone

I. INTRODUCTION

Beamforming algorithms are widely used in devices with
multiple microphones to enhance speech signals [1]. These
algorithms usually require the estimation of the relative trans-
fer function (RTF) between the clean speech on a reference
microphone and the other ones. The simplest model assumes a
multiplicative RTF in the short-time Fourier transform (STFT)
domain, the so-called narrowband approximation [2]. When
time-invariant acoustic impulse responses (AIRs) are consid-
ered, this model assumes that the RTF only depends on the
considered frequency bin. This approximation is no longer
valid when a finite analysis window is employed, especially in
the case of reverberant environments, so inter-band and inter-
frame correlations should be considered [2].

To overcome this problem, and also be able to consider
possible time variations of the RTF, one solution is to model
the second order statistics of the RTFs [2]. In a single-speaker
scenario, most of these models assumes that the clean speech
at the different microphones is perfectly correlated. Based
on this, two widely used RTF estimators are the covariance
subtraction (CS) [3] and covariance whitening (CW) [4]
methods. Although CW provides a more accurate estimation

This work has been supported by the Spanish MINECO/FEDER Project
TEC2016-80141-P and the Spanish Ministry of Education through the Na-
tional Program FPU (grant reference FPU15/04161). We also acknowledge
the support of NVIDIA Corporation with the donation of a Titan X GPU.

of the RTF than CS [5], the computational complexity of
solving a generalized eigenvalue (GEV) problem makes that
method inappropriate for real-time applications. More recently,
the eigenvalue decomposition (EVD) method was proposed in
[6]. The advantage of EVD is its similar performance to the
CW method but with a lower complexity [7], which makes
it suitable for real-time applications. An additional issue with
the former methods is that they make assumptions about the
clean speech statistics that can be inaccurate, especially in
reverberant environments. Also, their performance relies on a
good estimation of the noise statistics [7].

Alternative methods formulate the RTF estimation as a
weighted least-square (WLS) problem, where both speech
and RTF sparsities are exploited [8]. These methods do not
use prior statistics of the speech and noise signals. They
estimate both the RTF and the noise statistics, and different
constraints are imposed to the solutions. Moreover, they have
higher complexity and slower convergence because they need
many more frames and/or sparsity constraints to be accurate
enough. In [9], an unscented Kalman filter is proposed in
the time domain to jointly estimate the AIRs and the clean
speech, but it assumes an autoregressive model for the speech
signal and fixed-length AIRs. Other works formulate the joint
estimation of the RTF and the clean speech and noise statistics
in an expectation-maximization (EM) framework [10]. The
EM algorithm can be used along with a Kalman filter that
follows the temporal variations of the speech signal [11]. The
problem of these algorithms is that they require the estimation
of both the RTF and the signal statistics in an EM framework,
which is computationally unfeasible on small devices.

In this work, we propose a novel minimum mean square
error (MMSE) estimation of the RTF in an extended Kalman
filter (eKF) framework capable to track the RTF evolution.
Our method uses a priori knowledge about the RTF and noise
statistics along with the observed noisy signals. The main
advantage with respect to the aforementioned methods is that
no assumptions about the clean speech are needed. To avoid
dealing with non-zero mean complex variables [12], [13],
our method works with vectors of the real and imaginary
parts of the involved variables. For evaluation, we consider
the estimation of the RTF associated to a dual-microphone
smartphone. This is a quite common device whose typical
utilization positions allow us the estimation of well-defined
RTF a priori statistics, required for eKF tracking. Two typical
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positions and several acoustic environments are evaluated.
The reminder of this paper is organized as follows. In

Section II, the proposed method is described. In Section
III, we describe the development of the dual-microphone
smartphone database employed in our experiments. Then, in
Section IV, our proposal is evaluated with different quality and
intelligibility measures when combined with minimum vari-
ance distortionless response (MVDR) beamforming. Finally,
conclusions are summarized in Section V.

II. EXTENDED KALMAN FILTER-BASED RTF ESTIMATION

Let us consider an additive noise distortion model in the
STFT domain, namely,

Ym(f, t) = Xm(f, t) +Nm(f, t), (1)

where Ym(f, t), Xm(f, t) and Nm(f, t) represent, respec-
tively, noisy speech, clean speech and noise STFT coefficients
at the m-th microphone (m = 1, 2), f is the frequency bin
and t the frame index. Without loss of generality, we consider
m = 1 as the reference microphone and write the narrowband
model for the secondary microphone as

Y2(f, t) = A21(f, t) (Y1(f, t)−N1(f, t)) +N2(f, t), (2)

where A21(f, t) = X2(f,t)
X1(f,t)

is the relative transfer function
(RTF) between the two microphones. The aim of this paper is
the estimation of this RTF.

All the previous complex variables can be written as two-
dimensional vectors with their corresponding real and imagi-
nary parts. For example, we can define y

(t)
m as

y(t)
m =

[
Re(Ym(t)) Im(Ym(t))

]>
, (3)

where the index f is omitted for clarity. Similarly, a
(t)
21 and n

(t)
m

can also be defined. In order to develop an estimator for a
(t)
21 ,

we first assume that the RTF changes across frames according
to a perturbed constant model,

a
(t)
21 = a

(t−1)
21 + w(t), (4)

where the random variables involved are assumed to be
Gaussian-distributed, i.e., a

(t)
21 ∼ N

(
µA21

,ΣA21

)
and w(t) ∼

N (0,Q). The parameters µA21
and ΣA21

represent, re-
spectively, the overall mean and covariance of the RTF, as
will be explained in Subsection II-A. On the other hand,
w(t) models the intra-utterance variability. The existence of
this perturbation has a twofold meaning. First, the possible
temporal variations of the AIRs, but also the inaccuracy of
the narrowband approximation [2].

Also, by using (2) and (3), we propose the following non-
linear observation model for y

(t)
2 given y

(t)
1 :

y
(t)
2 = h

(
a
(t)
21 ,n

(t)
1 ; y

(t)
1

)
+ n

(t)
2

=
[
C
(
y
(t)
1 − n

(t)
1

)
D
(
y
(t)
1 − n

(t)
1

)]
a
(t)
21 + n

(t)
2 ,

(5)

where D =

[
0 −1
1 0

]
and C = I2 (2×2 identity matrix). This

is an ad-hoc model given the specific signal y
(t)
1 captured by

the reference microphone. The noises are also assumed to be
Gaussian-distributed, i.e., n

(t)
m ∼ N (0,ΣNm,t).

Under these assumptions, we propose an MMSE estimator
of a

(t)
21 using an extended Kalman filter (eKF) framework [14].

The RTF estimate, â
(t)
21 , and its error covariance matrix,

Pt = E

[(
a
(t)
21 − â

(t)
21

)(
a
(t)
21 − â

(t)
21

)>]
, (6)

where (·)> indicates matrix transposition, are calculated on
a frame-by-frame basis through a two-step procedure. The
prediction step uses the model of (4) to make a first estimation,

â
(t|t−1)
21 = â

(t−1)
21 , (7)

Pt|t−1 = Pt−1 + Q, (8)

with an initialization given by â
(0)
21 = µA21

and P0 = ΣA21
.

Next, we apply the updating step to obtain the estimation of
the RTF by using the ad-hoc observation model of (5). The
non-linear function h is approximated by a first-order vector
Taylor series (VTS) linearization, yielding the following eKF:

â
(t)
21 = â

(t−1)
21 + Kt

(
y
(t)
2 − h

(
â
(t−1)
21 ,0; y

(t)
1

))
, (9)

Pt = Pt|t−1 −KtHtPt|t−1, (10)

where Kt is the Kalman gain, defined as

Kt = Pt|t−1H
>
t

(
HtPt|t−1H

>
t + JN1,tΣN1,tJ

>
N1,t

+ΣN2,t + JN1,tΣN1N2,t + ΣN2N1,tJ
>
N1,t

)−1
,

(11)

and ΣN1N2,t = Σ>N2N1,t is a spatial cross-covariance matrix
of the noise. Finally,

Ht =
∂h

∂a
(t)
21

∣∣∣∣∣
n

(t)
1 =0

=
[
Cy

(t)
1 Dy

(t)
1

]
, (12)

JN1,t =
∂h

∂n
(t)
1

∣∣∣∣∣
a
(t)
21 =â

(t−1)
21

= −
[
Câ

(t−1)
21 Dâ

(t−1)
21

]
, (13)

are the Jacobian matrices required for the VTS approximation.

A. Estimation of the noise and RTF statistics

The proposed eKF algorithm requires knowledge of the
noise and RTF statistics previously defined. The noise statistics
are obtained at each frame using the Multichannel Speech
Presence Probability (MC-SPP) noise tracking algorithm pro-
posed in [15]. This algorithm estimates the noise spatial
correlation matrix

Φnn(f, t) =

[
Φ11(f, t) Φ12(f, t)
Φ21(f, t) Φ22(f, t)

]
. (14)

Assuming a zero-mean, symmetric circular complex Gaussian
distribution for Nm(f, t), it can be shown [13] that ΣN1 =
1
2Φ11I2, ΣN2 = 1

2Φ22I2, and

ΣN1N2
=

1

2

[
Re(Φ12) −Im(Φ12)
Im(Φ12) Re(Φ12)

]
, (15)

where the indices f and t are omitted for clarity.
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On the other hand, the RTF statistics (i.e., µA21
, ΣA21

and Q) are estimated in advance. For the estimation of these
statistics, a development set of dual-channel clean speech
recordings at different acoustic environments has been em-
ployed. The dynamic range of the utterance is first normalized
to its mean square value. Then, for each utterance, we compute
A21(f, t) at those time-frequency bins where the reference
channel is greater than 20 dB in order to ensure speech
presence and avoid outliers. For a given frequency f , and
using the sequence of selected A21(f, t) values, we obtain a
mean value for each utterance l, µ(l)

A21
, and an overall average

over all the utterances, µA21
. Finally, the RTF covariances are

computed according to (4),

ΣA21
= E

[(
a
(t)
21 − µA21

)(
a
(t)
21 − µA21

)>]
= ΣA21,r + ΣA21,v,

(16)

Q = E

[(
a
(t)
21 − a

(t−1)
21

)(
a
(t)
21 − a

(t−1)
21

)>]
= 2ΣA21,v.

(17)
where

ΣA21,r = E

[(
µ

(l)
A21
− µA21

)(
µ

(l)
A21
− µA21

)>]
(18)

is the covariance of the utterance-dependent means µ
(l)
A21

,
whose mean value is µA21

. Therefore, it accounts for the inter-
utterance variability due to acoustic changes. On the other
hand,

ΣA21,v = E

[(
a
(t)
21 − µ

(l)
A21

)(
a
(t)
21 − µ

(l)
A21

)>]
(19)

represents an intra-utterance variability mainly due to the
inaccuracy of the narrowband approximation. This covariance
matrix has been estimated by averaging the particular intra-
utterance sample covariances Σ

(l)
A21,v

.

B. RTF updating

The observation model of (5) assumes that speech is present.
Moreover, the updating information provided by (5), and
applied in (9), will be more accurate as long as speech more
clearly stands above noise. Thus, the RTF at each frequency
will be updated only in those frames where the SNR is large
enough. Otherwise the previous value will be preserved. In
order to estimate the updating binary mask, which indicates
the bins where the RTF is to be updated, we use the following
parameter proportional to the SNR at the considered time-
frequency bin [15],

β(f, t) = YH(f, t)Φ−1nn(f, t)Φxx(f, t)Φ−1nn(f, t)Y(f, t),
(20)

where Y(f, t) =
[
Y1(f, t) Y2(f, t)

]>
is the dual-channel

noisy speech vector, and Φxx(f, t) is the clean speech spatial
correlation matrix. This matrix is obtained from the noise
tracking algorithm [15]. In our implementation, the values of
the binary mask are set to true when 10 log10 β(f, t) > 30 dB.

III. DUAL-MICROPHONE SMARTPHONE DATABASE

The proposed algorithm will be applied to the estimation of
the RTF between the primary and secondary microphones of
a smartphone. With this purpose, we simulated dual-channel
noisy speech recordings on a smartphone. We considered two
different modes of use: close-talk (CT, when the loudspeaker
of the smartphone is placed at the ear of the user) and far-
talk (FT, when the user holds the device at a distance from
her/his face). The methodology followed is similar to the
one considered in [16], [17]. The smartphone employed is
a Motorola Moto G, which has a primary microphone at its
bottom and a secondary one at its top.

First, we recorded dual-channel noise signals at eight differ-
ent noisy environments, both for CT and FT modes. The noise
signals recorded were divided into two sets. Set A includes
the noises car (CAR), street (STR), babble (BAB) and mall
(MLL). Set B includes the noises bus (BUS), cafe (CAF),
pedestrian street (PST) and bus station (BST).

Next, we obtained several dual-microphone AIRs, both for
CT and FT, at four different reverberant acoustic environments.
Each type of noise was assigned to a specific type of acoustic
environment, according to its expected reverberation level.
The reverberant environments (and their corresponding noises)
are the following: no reverberation (CAR, STR, PST), low
(BUS, CAF), medium (BAB, BST) and high (MLL). We
recorded both close-talk high quality cardioid microphone and
smartphone recordings of clean speech, which were synchro-
nized later. A sampling frequency of 48 kHz was selected.
Then, the AIRs were estimated using these clean speech
recordings. First, the high quality microphone recording is
assumed to be the true-ground clean speech signal s(n). Then,
the smartphone recordings xm(n) are approximated as filtered
versions of s(n) using FIR filters am(n), which model both
the environment and the microphone responses. The estimation
of am(n) is formulated as a least-square (LS) problem with
sparse coefficients enforced by using L1-norm. First, the LS-
based cost function is defined as

J(am) = a>mRsam − a>mrxms − r>xmsam, (21)

where am is an L × 1 vector with the AIR coefficients, Rs

is the L × L autocorrelation matrix of s(n) and rxms is the
L × 1 cross-correlation vector between xm(n) and s(n). We
define a∗m as the value of the AIR that analytically minimizes
J(am). Finally, am is obtained as

am = argmin
am

{
(1− λ)

J(am)−J(a∗
m)

|J(a∗
m)| + λ‖am‖1

‖a∗
m‖1

}
, (22)

where ‖·‖1 means L1-norm and λ is a trade-off factor between
LS minimization and filter sparseness. Finally, the estimated
AIRs are downsampled to 16 kHz. During our experiments,
we set λ = 0.15 and different values of L were considered
for each reverberant environment (320, 960, 2560, 5120). The
minimization problem in (22) has not a closed-form solution,
but it is a convex equation, so it can be solved using either
convex optimization or gradient-based methods.
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TABLE I
PESQ AND STOI RESULTS FOR THE NOISY SPEECH FROM THE REFERENCE MICROPHONE (NOISY) AND THE DIFFERENT RTF-ESTIMATION METHODS IN

CLOSE-TALK (CT) AND FAR-TALK (FT) CONDITIONS.

CT FT
SNR
(dB)

Noisy EVD CW eKF (Prop.) Noisy EVD CW eKF (Prop.)
PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

20 1.803 0.882 1.985 0.888 1.994 0.889 1.916 0.889 1.943 0.910 2.172 0.911 2.177 0.910 2.093 0.915
15 1.516 0.843 1.664 0.853 1.671 0.853 1.618 0.853 1.615 0.872 1.866 0.879 1.870 0.878 1.744 0.881
10 1.309 0.791 1.423 0.804 1.427 0.805 1.396 0.805 1.370 0.811 1.575 0.822 1.578 0.822 1.471 0.824
5 1.180 0.717 1.257 0.731 1.260 0.732 1.246 0.736 1.211 0.727 1.359 0.726 1.361 0.726 1.284 0.737
0 1.116 0.626 1.162 0.636 1.163 0.637 1.158 0.648 1.129 0.623 1.221 0.600 1.221 0.601 1.171 0.630
-5 1.099 0.532 1.127 0.549 1.130 0.549 1.112 0.561 1.122 0.517 1.179 0.496 1.182 0.497 1.124 0.532
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Fig. 1. Performance of the evaluated methods in terms of ∆SNR for close-
talk (a) and far-talk (b) positions.

Finally, the CT and FT databases were set up. Clean
speech signals were obtained from the VCTK database [18],
downsampled to 16 kHz. The utterances from the 108 speakers
of the VCTK were split into three sets: training (72 speakers),
development (18 speakers) and test (18 speakers) sets. For
each noisy environment, the clean speech is filtered using dual-
channel AIRs randomly selected from the set of available AIRs
for the corresponding reverberant environment. The noise
signals are added at six different SNR levels from -5 dB to
20 dB. The training and development sets only include noises
from set A, while the test set includes both set A and set B
noises.

IV. EXPERIMENTAL RESULTS

The proposed eKF method is compared with the EVD and
CW methods for the estimation of the RTF. The estimated
RTF is employed, along with the noise spatial correlation
matrix obtained using MC-SPP, to enhance the noisy speech
from the reference microphone using an MVDR beamformer.
Both EVD and CW make use of the clean speech spatial
correlation matrix Φxx obtained for MC-SPP. Also, EVD and
CW use the RTF updating described in Subsection II-B for a
fair comparison. For STFT computation, we choose a 25 ms
square-root Hann window with 75% overlap.

The resulting enhanced signals are evaluated using different
objective measures. We use PESQ (Perceptual Evaluation of
the Speech Quality) [19] and STOI (Short-Time Objective
Intelligibility) [20] metrics for evaluating, respectively, percep-
tual quality and intelligibility. Clean speech from the reference
microphone is taken as a reference for these performance
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Fig. 2. Performance of the evaluated methods in terms of SDR (%) for close-
talk (a) and far-talk (b) positions.

metrics. The results for close-talk (CT) and far-talk (FT)
conditions are shown in Table I. The results obtained for
the noisy speech from the reference microphone are included
as our baseline. We also evaluate the SNR increment (array
gain, ∆SNR) [1] and the speech distortion ratio (SDR) [1]
for the different methods with respect to the noisy and clean
speech from the reference microphone, respectively. For both
measures, as in [7], we use 30 ms non-overlapping voice
segments and the final measure is averaged over all segments.
The ∆SNR and SDR results are shown in Figures 1 and 2,
respectively.

These results show that the proposed method achieves the
best results in terms of intelligibility and speech distortion,
especially in far-talk conditions. The improvements are more
significant when the SNR is lower, where our method is
more robust against noise. On the other hand, in terms of
perceptual quality and noise reduction, the CW and EVD
methods generally achieve better results, especially in far-talk
and medium/high SNRs. As expected, CW and EVD perform
similarly, while EVD has a lower computational burden. While
CW and EVD focus on noise reduction, our method achieves
the best performance in terms of distortion over the speech
signal, finally yielding better intelligibility scores. This can
be explained by the fact that speech distortion plays a more
important role in intelligibility metrics than in perceptual ones
(as PESQ) [21]. Finally, it can be also observed that smaller
improvements are achieved for the CT position. This is due to
the lower performance of the MVDR beamformer when speech
is meaningfully attenuated at the secondary microphone with
respect to the primary one (as in CT mode).
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In order to better understand these results, let us consider the
enhancement algorithm employed. MVDR beamforming tries
to minimize the noise power with a distortionless condition for
the reference speech signal, which could be achieved through
a perfect estimation of the RTF. In general, this is not feasible,
so speech distortion is introduced. The fact that our method
introduces less distortion indicates that our RTF estimation
is more accurate. CW and EVD make assumptions about the
clean speech spatial correlation that can turn out inaccurate,
especially in reverberant environments, while our method does
not need any assumption about the clean speech signal. On
the other hand, CW and EVD exhibit a strong dependency
on the estimation of the noise statistics. Thus, they likely
tend to reduce noise at the expense of increasing distortion
on the speech signal. Also, since the estimation of the noise
might be inaccurate and may include speech components, this
could introduce speech cancellation on the beamformer. Our
method neither has such a strong dependence on the noise nor
needs the estimation of the noisy speech statistics as the other
methods. This is due to the fact that our method directly works
with the RTF statistics, which are much easier to model than
the clean speech ones.

In view of the results and the previous analysis, we can
conclude that the proposed method achieves more accurate
RTF estimates than EVD and CW, which yields better results
on speech distortion introduced. Despite the lower noise
reduction obtained when used in combination with MVDR
beamforming, our method achieves an advantageous trade-
off between noise reduction and speech distortion, which
leads on better intelligibility results. That is, we obtain a
more accurate RTF estimator that also achieves a competitive
perceptual quality performance, much less speech distortion
and better intelligibility scores when employed with MVDR
beamforming.

V. CONCLUSIONS

In this paper we have proposed an eKF-based estimation
of the RTF between two microphones. The proposed ap-
proach exploits the statistics of the RTF and its variability
without any assumption about the clean speech signal. We
have evaluated the proposed estimator when employed with
MVDR beamforming on a dual-microphone smartphone to
enhance the speech signal. With this purpose, we have used
a database of simulated dual-channel noisy speech recordings
on a smartphone to test our method. The experimental results
indicate that our method achieves more accurate RTF estimates
than other methods, leading to less speech distortion and better
intelligibility of the enhanced speech signal. As future work,
we will extend the proposed methodology to other specific
dual-microphone enhancement techniques as well as to a more
general case with more microphones, where the use of a more
accurate RTF is expected to yield significant improvements.
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