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Abstract—This paper addresses the problem of dimension
reduction of noisy data, more precisely the challenge to determine
the dimension of the subspace where the observed signal lives
in. Based on results from random matrix theory, two novel
estimators of the signal dimension are proposed in this paper.
Consistency of the estimators is proved in the modern asymptotic
regime, where the number of parameters grows proportionally
with the sample size. Experimental results show that the novel
estimators are robust to noise and, moreover, they give highly
accurate results in settings where standard methods fail. We
apply the novel dimension estimators to several life sciences
benchmarks in the context of classification, and illustrate the
improvements achieved by the new methods compared to the
state-of-the-art approaches.

I. INTRODUCTION

Dimensionality reduction aims at separating signal from
noise in order to preserve significant properties of data in
a low-dimensional space before analyzing them by further
statistical methods. Data representation in a lower dimension is
needed in many applications, such as computer vision, natural
language processing or bioinformatics, where the number of
observed features or parameters has considerably increased
mainly due to technical advances. Nevertheless, increasing
the number of features does not automatically increase the
dimension of the subspace where the signal lives in. In-
deed, in speech recognition [11], wireless communications
[26], hyperspectral imaging [18], chemometrics [16], medical
imaging [4], genomics [22], mathematical finance [17], or
wireless communications [14], [3], the signal space dimension
is much lower than the number of observed parameters. Thus,
a challenge is to determine the low-dimensional signal space
in order to project the data onto it, as it is done, for instance,
by principal component analysis (PCA) [15]. In this context, a
fundamental question is how to determine an optimal minimal
dimension of a high-dimensional problem. A major difficulty
in real data sets is the presence of noise, making the estimation
of the signal space rather involved.

A number of methods to determine an optimal dimension
have been proposed (see [6] for an overview). The most
prominent method [15] uses the number of principal compo-
nents that are necessary to explain a given part of the total
variance. The scree test [7] which relies on the detection of
an elbow in the scree graph, that is the plot of ordered sample

eigenvalues, is also widely used in practice. Both methods are
rather heuristical. Further methods are the SURE method [27],
[28], model-order selection in a Bayesian framework [4], [24]
or maximum-likelihood based approaches [25]. Although they
achieve reasonable performance, most of them lack theoretical
explanations.

Another recent approach introduced by [21] is based on
eigengaps, that is the distance between consecutive sample
eigenvalues. The novelty of this method (for both white [21]
and colored [10] noise) is that a sound mathematical foun-
dation is provided stemming from results in random matrix
theory. Notably consistency in the modern asymptotic regime
is proved, when both the sample size and the number of pa-
rameters tend to infinity. This is most relevant for applications
where the number of parameters is comparable with or is even
larger than the number of observations.

Despite theoretical guarantees, the eigengap method [21]
suffers from that it relies on local features of the scree graph.
If a single sample eigenvalue is badly estimated, the dimension
estimate may be very erroneous. Indeed, in practice high
accuracy is only obtained when the signal eigenvalues are well
separated.

We propose a method that is robust to the presence of
similar or even identical signal eigenvalues, while preserving
the strong theoretical properties of the eigengap method. This
is achieved by a more global look on the sample eigenval-
ues. It is noteworthy that the consistency of the proposed
eigenrange and threshold methods does not depend on strong
distributional assumptions like normality as it is the case of
the maximum-likelihood approaches and others. Moreover,
we address the problem of estimating the variance from the
data. Both the eigenrange and threshold methods perform very
competitively on real data.

The paper is organised as follows. Section II introduces our
methods and provides the theoretical foundations. Section III
illustrates the performance of the eigenrange and threshold
methods in the context of classification on real data. Conclud-
ing remarks and perspectives close the paper in section IV.

II. NEW ESTIMATORS OF THE SIGNAL SPACE DIMENSION

In this section we introduce the mathematical framework
and present the new eigenrange and threshold methods. We
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show the consistency of the new estimators when the noise
level is known. Then we address the problem of unknown
variance, which is most relevant for real applications. First,
an estimator of the variance is proposed and is shown to be
consistent. Second, an iterative procedure is proposed to deal
with unknown noise level.

A. Spiked population model

We consider the additive noise model, where the signal
vector s ∈ Rp is corrupted by some additive white noise e:

y = s + e . (1)

The random vectors s and e are supposed to be independent
and the noise e has zero mean and covariance σ2Ip, σ2 > 0.
Denoting the signal’s covariance matrix by Rs, the covariance
of the observation vector y verifies Ry = Rs + σ2Ip.

Often the signal s is a linear combination of a relatively
small number of predictors, i.e. s = Σx with some (p × r)
matrix Σ and r < p. In other words, the signal lives in a proper
subspace of Rp of dimension r. Signal space dimension r is
then given by the rank of the signal’s covariance matrix Rs.

Denote the non zero eigenvalues of Rs by α1 > · · · >
αr > 0 and the eigenvalues of Ry by λ1 ≥ · · · ≥ λp > 0. In
this model, which is also referred to as the spiked population
model, the eigenvalues verify

λl =

{
αl + σ2, l = 1, . . . , r
σ2, l > r

The first r eigenvalues λ1, . . . , λr are called spikes and they
are larger than the nonspiked ones. As a consequence, the
eigenvalues of Ry yield important information on the signal
dimension r.

Now let the observations y1, . . . yn be n i.i.d. realizations
of y given by the following spiked model

y = Σ1/2x + e , (2)

where, x ∈ Rp is a vector of i.i.d. zero mean and variance
1 entries, and Σ is the theoretical covariance matrix of the
observations given by: Σ = Vdiag (α1, . . . , αr, 0, . . . , 0) Vt ,
Then the sample covariance matrix is R̂y = 1

n

∑n
i=1(yi −

ȳ)(yi − ȳ)t where ȳ = 1
n

∑n
i=1 yi. The associated sample

eigenvalues are denoted by λ̂1 ≥ · · · ≥ λ̂p ≥ 0.

B. New estimation methods when σ2 is known

When many features are observed, the traditional asymptotic
results, where the sample size n grows, while the number
of features p is fixed, may be rather bad approximations
of what happens on finite samples. Generally, results in the
modern regime, where both n and p tend to infinity, provide
much better approximations of the finite sample situation.
Concerning the estimation of the eigenvalues λl by the sample
ones λ̂l, notable works including [2] state consistency in the
traditional regime. However, consistency no longer holds when
both n and p grow. Recent advances in random matrix theory
provide convergence results in the modern asymptotic regime.
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Fig. 1: Illustration of spikes and pure noise eigenvalues, and
of the bias of the sample eigenvalues: eigenvalues λl (black
dots), sample eigenvalues λ̂l (blue stars), theoretical limits of
the sample eigenvalues (red diamonds) as p/n→ c.

In the pure noise case, where y = e and Ry = σ2Ip, the
seminal work of Marchenko and Pastur [19] shows that, when
p/n → c, all limiting values φl of the sample eigenvalues λ̂l
lie within the interval [a, b] := [σ2(1 −

√
c)2, σ2(1 +

√
c)2],

which is the support of the so-called Marcenko-Pastur law.
In the additive noise model, the nonspiked sample eigen-

values still tend to lie in the Marchenko-Pastur interval [a, b],
while the limits of the spikes are outside [3]. This result holds
under the assumption that spikes are sufficiently different from
pure noise eigenvalues. More formally, if αl > σ2

√
c for

l = 1, . . . , r and p/n→ c, then for l = 1, . . . , r

λ̂l −→ φl = αl + σ2

(
1 + c+

cσ2

αl

)
a.s. (3)

Moreover, the first and last pure noise eigenvalues satisfy

λ̂r+1 −→ b = σ2(1 +
√
c)2 a.s.

λ̂m −→ a = σ2(1−
√
c)2 a.s. (4)

where m = min(n, p). It is clear that any procedure relying
on sample eigenvalues must take into consideration their bias,
that is the difference between the limiting values of the sample
eigenvalues λ̂l and the model eigenvalues λl. This bias is
illustrated in Figure 1.

These asymptotic properties of the sample eigenvalues can
be used to derive new estimators of the signal space dimension
r. First, as φl > b for l = 1, . . . , r and λ̂r+1 −→ b a.s., the
number of sample eigenvalues exceeding b shall be close to r.
Taking into account the uncertainty of the sample eigenvalues,
it is more appropriate to choose a threshold of the form b+cn,
where cn is a sequence to be chosen. Thus, a first estimator
of the signal space dimension is given by

r̂thresh = #{l : λ̂l > b+ cn} = max{l : λ̂l > b+ cn}. (5)

We refer to r̂thresh as the threshold method.
Second, the range of the pure noise sample eigenvalues,

λ̂r+1 − λ̂m, is about b − a, while the distance λ̂l − λ̂m for
any l = 1, . . . , r is significantly larger. From this viewpoint, a
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natural estimator of the signal dimension r is derived as the
number of sample eigenvalues that must be discarded such
that the remaining eigenvalues are contained in an interval of
approximate length b−a. Denote δl = λ̂l+1−λ̂m and consider
a threshold of the form b− a+ dn. Then an estimator of the
signal space dimension is defined by

r̂range = #{l : δl ≥ b− a+ dn} = min{l : δl < b− a+ dn}.
(6)

We refer to r̂range as the eigenrange method.

C. Consistency

We show that both the eigenrange estimator r̂range and the
threshold method r̂thresh are consistent estimators of the signal
space dimension r for an appropriate choice of the sequences
cn in (5) and dn in (6). The proof relies on the rates of
convergence of the smallest and the largest pure noise sample
eigenvalues when p/n→ c. According to [8] and [5],

n2/3(λ̂n,r+1 − b) = OP(1), n2/3(λ̂n,mn
− a) = OP(1), (7)

where the notation Xn = OP(1) means that Xn is a
stochastically bounded sequence. To ease the understanding
of the asymptotics, in this section subscript n is added to all
quantities depending on n. An event holds almost surely if it
holds with probability tending to 1 as n and p tend to infinity.

Theorem 1. Let the sequence dn be such that dn → 0 and
n2/3dn →∞ as n→∞. Suppose that the signal eigenvalues
satisfy αk > σ2

√
c for k = 1, . . . , r. Then under a moment

conditions as in model 2, the eigenrange estimator r̂range

defined in (6) is a consistent estimator of the dimension of
the signal space, that is, as p/n→ c,

r̂range
n −→ r almost surely.

Proof. Without loss of generality let σ2 = 1. Denote d̃n =
b− a+ dn. As δn,l > δn,l−1 for all l, we have

{r̂range
n = r} = {δn,r < d̃n} ∩ {δn,r−1 ≥ d̃n},

implying that

P(r̂range
n = r) = 1− P

(
{δn,r ≥ d̃n} ∪ {δn,r−1 < d̃n}

)
≥ 1− P(δn,r ≥ d̃n)− P(δn,r−1 < d̃n).

On the one hand, by (7) and as n2/3dn →∞,

P
(
δn,r ≥ d̃n

)
= P

(
n2/3(λ̂n,r+1 − b)− n2/3(λ̂n,mn

− a) ≥ n2/3dn
)

−→ 0.

On the other hand, it holds that

P(δn,r−1 <d̃n) = P
(
λ̂n,r − λ̂n,mn

< dn + b− a
)

= P
(

(λ̂n,r − φr)− (λ̂n,mn
− a)− dn < b− φr

)
−→ 0,

since b−φr = − (αr−
√
c)2

αr
< 0 and (λ̂n,r−φr)− (λ̂n,mn

−
a) − dn

P−→ 0 by (3), (7) and as dn → 0. Combining all
arguments yields P(r̂range

n = r)→ 1. This completes the proof.

The proof showing that

r̂thresh
n −→ r almost surely

follows the same lines as the proof of Theorem 1.
We conducted an extensive simulation study to calibrate the

sequences cn and dn, and concluded that the best choice for
both rthresh and rrange is given by

cn = dn = σ2n1/20−2/3. (8)

D. Consistent estimator of the variance σ2

In practice the noise level σ2 is generally unknown, though
required in (8) for the estimators. As the smallest non null
sample eigenvalue λ̂m converges to a = σ2(1 −

√
c)2, a

consistent estimator of the unknown variance σ2 is given by

σ̂2 =
λ̂m

(1−
√
c)2

. (9)

Theorem 2. If c 6= 1, the estimator σ̂2 of σ defined in (9) is
consistent, i.e.

σ̂2 −→ σ2, n/p→ c, n→∞.

Proof. By (4).

In the case of unknown σ2, both the eigenrange and the
threshold estimator can be used with σ̂2 instead of σ in (8).

E. An iterative procedure when σ2 is unknown

An alternative approach to deal with the unknown σ2 case
consists in an iterative procedure (similar to that in [21])
to estimate both r and σ2. More precisely, we alternate
the estimation of σ2 (using the current value rcurr of r)
and the estimation of r by the eigenrange or the threshold
method (with σ2 replaced by its current estimate σ̂2

curr) until
convergence. To estimate σ2 we use that the mean of the
pure noise sample eigenvalues λ̂l converges to σ2. The whole
procedure is given in Algorithm 1.

Algorithm 1 Iterative procedure when σ2 is unknown
1: Initialize rcurr = 0.
2: Estimate σ2 by σ̂2

curr = 1
p−rcurr

∑p
l=rcurr+1 λ̂l.

3: Compute the eigenrange estimate r̂eigen (threshold estimate
r̂thresh) where σ2 is replaced with σ̂2

curr in (8).
4: If rcurr < r̂, update rcurr = r̂ and return to 2, otherwise
rcurr is the final estimate of r.
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(a) Parkinson data set
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(b) Chronic kidney disease
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(c) Diabetic retinopathy
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(d) SPECTF heart data

Fig. 2: Estimated ranks and performance for data sets with a
small number of observations and features.
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(a) Leukemia
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(b) Colon cancer data
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(c) Arcene data
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Fig. 3: Estimated ranks and performance for scenarios where
the number of parameters is much bigger than the number of
observations (above), and where the number of both observa-
tions and features is getting big.

III. APPLICATION TO CLASSIFICATION

To illustrate the importance of accurate estimation of the
signal space dimension, we show how the eigenrange and
threshold methods improve results in the context of classi-
fication tasks.

To increase computational efficiency and also to reduce
noise in data, several versions of PCA with sparse loadings
have been proposed, namely the structured sparse PCA [13]
to which we refer in the following as Jenatton10, sparse PCA
that we call Zou06 method [29], and the inverse power method
applied to sparse PCA called Hein10 [12]. The data used in
our experiments are benchmarks from life sciences (most of
them from the UCI Machine Learning repository1).
• Parkinson data set is composed of 197 observations and

22 features containing biomedical voice measurements.
The task consists in to predict whether a patient is healthy
or ill.

• Chronic kidney disease data set classifies 400 patients
into ill and healthy based on 24 medical attributes such
as blood pressure, bacteria, hemoglobin, etc.

• Diabetic retinopathy Debrecen cohort contains informa-
tion extracted from images whether an image contains
signs of diabetic retinopathy or not. The number of
instances is 1151, and the number of features is quite
limited, namely, 19.

• SPECTF heart data set includes 267 observations and 44
features corresponding to SPECT images for patients with
and without cardiac problems.

• Molecular classification of leukemia data set [9] contains
gene expressions of 72 patients and 3562 genes.

• Colon cancer data set of [1] consists of 62 patients and
2000 gene expressions of colon adenocarcinoma tissues.

• The aim of p53 mutants data set is to models mutant p53
transcriptional activity (active or not) from biophysical
simulations data. There are 31159 instances and 5408
continuous features.

• Arcene task is dedicated to distinguish cancer versus
normal patterns from mass-spectrometric data. The num-
ber of observations is equal to 200, and the number of
continuous features equals 10000.

While choosing the data sets, we tried to consider three
realistic scenarios. The first scenario is a setting where the
number of observations and original dimensions are relatively
small. The gene expression data reflect a scenario where the
number of observations is much smaller than the number of
features, and the p53 mutations data sets can be seen as a case
where both the numbers of observations and of features are
big.

We find optimal dimensions of new reduced data using
the scree test (ST), eigengap (EG), eigenrange (ER), and
thresholding (Tr) methods. We run the logistic regression and
SVM on the reduced data to make predictions. We perform
10-fold cross validation, and boxplot the obtained accuracies.
Note that the estimated ranks and projections are learned from
training data. We also test a heuristic which is computationally
expensive and that finds an optimal number of components by
cross validation (CV).

Figure 2 illustrates the performance and the estimated
ranks for Parkinson, Chronic Kidney, Diabetic Retinopathy,

1http://archive.ics.uci.edu/ml/datasets.html
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and SPECTF Heart data sets. Figure 3 shows our results
on Leukemia, Colon Cancer, p53 Mutant, and Arcene tasks.
The logistic regression and the SVM reached quite a similar
performance on the reduced data, and for each data set,
we show the results for a method which achieved a better
accuracy.

We have observed that the proposed eigenrange and thresh-
old methods tend to find a bigger rank than the scree test
and the eigengap which are quite stringent. The accuracies of
the proposed methods either achieve the state-of-the-art per-
formance, or outperform it. We have noticed, that the standard
PCA reaches in our experiments an optimal performance, and,
taking into consideration that the computational complexity of
the considered sparse PCA methods is quite high, we decided
to run only the standard PCA on two biggest data sets. On the
Arcene data (Figure 3, c)) we clearly see that the eigenrange
and threshold methods find a rank which leads to a better
performance than the state-of-the-art methods.

IV. CONCLUSION

Dimensionality reduction is a challenge, especially in ap-
plications where data are noisy. We proposed two highly
accurate estimators of the signal dimension, based on global
statistics involving sample eigenvalues, that outperform such
state-of-the-art methods as scree test and eigengap that focus
on local features of the scree graph. Based on recent advances
of random matrix theory, we formulated our main theoretical
result summarized in Theorem 1. The simulated and real data
experiments confirm our theoretical findings and, moreover,
show the robustness in situations where the state-of-the-art
methods fail, that is when spiked eigenvalues are close to
each other. The novel eigenrange and threshold methods are
of great interest for applications where assumptions on the
spiked eigenvalues or on the distribution of the observations
are difficult to assert. A further advantage of the proposed
method is that it is straightforward to implement, and it is not
computationally expensive.

Our method is not directly connected to classification, since
the proposed dimensionality reduction procedure is completely
unsupervised. However, we have tested the algorithm to reduce
data before applying a prediction method, and we observed
a clearly beneficial effect. It is promising to integrate the
eigenrange and threshold approaches into other methods that
rely on the eigenstructure of a data matrix. In particular, we are
currently investigating its extension to the problem of spectral
clustering.
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