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Abstract—Low-latency detection of gravitational waves (GWs)
from compact stellar mergers is crucial to enable prompt follow-
up electro-magnetic (EM) observations, as to probe different
aspects of the merging process. The GW signal detection involves
large computational efforts to search over the merger parameter
space and Graphics Processing Unit (GPU) can play an important
role to parallel the process. In this paper, Summed Parallel Infi-
nite Impulse Response (SPIIR) GW detection pipeline is further
optimized using recent GPU techniques to improve its throughput
and reduce its latency. Two main computational bottlenecks
have been studied: the SPIIR filtering and the coherent post-
processing which combines multiple GW detector outputs. In
the filtering part, inefficient memory access is accelerated by
exploiting temporal locality of input data, where the performance
over previous implementation is improved by a factor of 2.5-
3.5x on different GPUs. The post-processing part is improved
by employing multiple strategies and a speedup of 12-25x is
achieved. Once again, it is shown that GPUs can be very useful
to tackle computational challenges in GW detection.

I. INTRODUCTION

The first direct observation of gravitational waves (GWs)

were made in September 2015 by the Laser Interferometric

Gravitational-Wave Observatory (LIGO) [1]. Since then, five

GWs have been observed with high confidence including the

first GW observation from a binary neutron star merger [2]. It

is expected there will be more events in the coming years when

LIGO and other GW detectors finish upgrading and come

into operation in better sensitivities. It is among the highest

priorities of the GW community to be able to observe these

events without delay, to alert other electromagnetic channels

for joint observations.

Several low-latency detection pipelines have been developed

in place which include the MBTA pipeline [3], the LLOID

pipeline [4], the PyCBC pipeline [5] and the Summed Parallel

Infinite Impulse Response (SPIIR) pipeline [6]. Each pipeline

has a complete procedure of dealing with raw streaming data

and submitting GW triggers to GW database. All of them have

achieved latencies of sub-minute during the last LIGO science

run.

The SPIIR coherent search pipeline (see Fig. 1) that we are

studying in this work mainly consists of six parts: data loading,

data whitening, SPIIR filtering, coherent post-processing, veto

and clustering of candidate events, candidate submission to

the GW database. The SPIIR method utilizes a group of IIR

filters to approximate a traditional matched filter. The result of

the filtering output is an approximation of the signal-to-noise

ratio (SNR). The coherent post-processing will combine SNRs

from different detectors coherently to form a single statistic

which will be used to evaluate the significance of a candidate.

The main computation of the pipeline lies in the filtering

part and the coherent post-processing part, which account for

52% and 36% of the total time consumption respectively.

Previously, we explored GPUs to accelerate the filtering part

of the pipeline [7], [8] and achieved an over 100x speedup on

this part [8]. This work will try to further accelerate both parts

with recent GPU features.

Nvidia GPUs have evolved from the Tesla architecture

to the state of the art Volta architecture with their single-

precision performance and memory bandwidth growing almost

exponentially. Recently some useful advanced features have

been supported, such as half precision arithmetic operations

and atomic operations, which will help the flexibility and

efficiency of parallel programs. However, it is more difficult

to fully utilize GPUs to accelerate an application compared

to acceleration using multiple cores of CPUs since it involves

utilization of various levels of memory access and synchro-

nizations between different levels of thread aggregation.

The structure of this paper is as follows: In Sec. II, the

optimization for the SPIIR filtering is introduced. The bot-

tleneck is inefficient memory access and is accelerated using

vectorized memory access, which exploits temporal locality of

data access and improves memory access efficiency. Sec. III

shows the optimization for the coherent post-processing. The

post-processing part is optimized iteratively using multiple

strategies. In Sec. IV, detailed experiments are carried out to

analyze performance improvement. Conclusions and the future

works are given in Sec. V.

II. OPTIMIZATION ON SPIIR FILTERING

A. Algorithm

The SPIIR method uses a group of IIR filters with time

delays to approximate a given matched filter. Each IIR filter

corresponds to a small segment of the matched filter (see

details in [6]). The filters will then operate on the data and

the filtering output is signal-to-noise ratio (SNR).

For simplicity, we only consider for one template. The

output of the lth IIR filter can be expressed as:
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Fig. 1. SPIIR gravitational wave detection pipeline

ylk = al1y
l
k−1 + bl0xk−dl

(1)

where al1 and bl0 are IIR coefficients and k denotes time in

discrete form. xk−dl
denotes input with a time delay dl. Then

the filtering outputs of the template are given by summing up

the outputs of all IIR filters in this template:

ẑk = 2∆t
∑

l

ylk (2)

Every time the filtering part is executed, one second

whitened data from individual detectors are processed sequen-

tially. Nt times calculations are needed for each filter, where

Nt denotes the sampling rate of the input data.

B. Analysis of previous implementation

In previous CUDA implementation [8], one template is

allocated to one thread block and the calculation for each

thread block is shown in Fig. 2a. Each thread corresponds to

one IIR filter and loops for Nt times to get filtering outputs.

Warp-shuffle operations1 and read-only data cache have

been used in previous implementation to improve reduction

efficiency and data loading performance. However, the im-

plementation still suffers from memory access issue because

the input data {xk−dl
} are not continuous in device memory

and could not be loaded efficiently by coalesced memory

access2. As the average difference of time delays of IIR

filters ∆d = |dl − dl+1| grows, more memory transactions

are needed. Read-only data cache can only partially solve the

problem because it suffers from the large amount of data and

low cache hit rate.

C. Optimization method

Temporal locality is explored to optimize the program. For

the lth thread, data inputs xk−dl
, xk+1−dl

, xk+2−dl
, ... are

loaded sequentially in the loop and located in continuous

memory space. In order to better utilize the temporal locality

characteristic, we use vectorized data type to load multiple

consecutive data inputs at the same time, as shown in Fig. 2b.

In our implementation, vectorized data type float4 is used

to load 4 data inputs at the same time. The original loop is

1Warp-shuffle operations provide a faster mechanism to exchange a variable
between threads in the same warp without using shared memory.

2Memory accesses of threads in a warp can be coalesced to decrease
memory transfer times depending on the data address distribution.

replaced by a nested loop. Data inputs are batch loaded in the

outer loop and IIR filtering for these four inputs is done in the

unrolled inner loop sequentially.

The inner loop need to be unrolled to make sure that

vectorized data inputs stay in registers instead of local mem-

ory. Instruction throughput is also improved by unrolling the

loop. By this method, the number of memory transactions is

decreased and the memory access efficiency is improved.

III. OPTIMIZATION ON COHERENT POST-PROCESSING

A. Algorithm

The principle of frequentist coherent search of GWs over

multiple detectors follows the maximum likelihood ratio prin-

ciple [9]–[11]. Recently it has been shown that four parameters

of the binary source, denoted as Ajk can be maximized

using a singular value decomposition method [11]. The rest

of parameters can be searched using brute-force method.

We denote here the multi-detector maximum log likelihood

ratio as the coherent SNR ρ2c . It can be shown that [11]:

ρ2c =
1

1Mpc
lnLNW

max{Ajk,θ,tc,α,δ}
, (3)

where 1Mpc is one mega parsec in distance, Ajk is the four

parameters describing the relative inclination of the detector

to the source, θ is the mass of the source, α, β are the

sky directions of the source, and LNW is the network log

likelihood ratio. The maximized network log likelihood ratio

can be written as (see details in [11]):

lnLNW
max{Ajk}

= ‖IUTZ‖2, (4)

where I = diag{1, 1, 0, 0, . . .}, U is the U matrix of the

singular value decomposition of detector response matrix [11].

ZT = (z(1), z(2), . . . , z(Nd)) is the filtering outputs from each

detector. Nd denotes the number of detectors in the network.

Another statistic that will be useful for glitch veto from the

coherent search is the residual SNR, which is usually called the

null SNR. When there is a GW received by multiple detectors,

the null SNR should follow central χ2 distribution. The null

SNR is given as:

ρ2NULL =
1

1Mpc
‖I†UTZ‖2

{θ̂,t̂c,α̂,δ̂}

(5)
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Fig. 2. SPIIR filtering before and after optimization

where I† = diag{0, 0, 1, 1, . . .} and θ̂, t̂c, α̂, δ̂ are parameters

determined by ρc in (3).

B. Task of coherent post-processing

In coherent post-processing, for one second filtering results,

ten to hundreds of GW event candidates {(t̂i, θ̂i)} are first

proposed for each detector to reduce the brute-force search

space of (3). For each candidate, all-sky search is performed

for both foreground and background events to get coherent

SNR, null SNR and corresponding sky direction. Background

events are used to calculate statistics for the following FAR ve-

toing. For foreground event (t̂, θ̂), corresponding time-shifted

background events are {(t̂− k∆t, θ̂)|1 ≤ k ≤ Nbg}.

C. Optimization method

The coherent post-processing part is optimized iteratively

and detailed optimization analysis is as follows.

1) Remove Synchronization: In previous implementation

(see Fig. 3b), foreground and background event search for one

candidate are processed in the same CUDA block. For each

all-sky search, all threads in the block are used to calculate the

maximum coherent SNR ρc and synchronizations are required

by block-level max-reduction, which consumes a large mount

of time.

Considering the computation time for foreground events

could be ignored, we only optimize for background events.

To avoid synchronization, we rearrange the computation and

perform all-sky search only within warps (see Fig. 3c). Then

the maximum coherent SNR could be got by warp-shuffle

operations, instead of block-level reduction. Then the number

of thread blocks for the new background kernel becomes:

Nblocks−new =

⌈

CNbg

Nwarps

⌉

(6)

where Nwarps = Nthreads/32 denotes the number of warps

per block and C is the number of candidates. There are totally

CNbg background event search tasks for all candidates and

these tasks are numbered from 0 to CNbg − 1. The jth warp

of the ith thread block performs the all-sky serach for the

(iNwarp + j)th task.

After optimization, since all event searches are performed

within warps, maximum coherent SNR can be calculated by

warp-shuffle operations without explicit block-level synchro-

nizations, by which time wasted by synchronizations is saved.

2) Arithmetic optimization: The program performance is

also limited by the hardware arithmetic instruction throughput

because of some computationally intensive codes.

In order to optimize arithmetic bottlenecks, the algorithm

is first improved to remove useless or repeated calculations.

Then intrinsic arithmetic functions are used to replace the

regular ones, for example normal division operation x/y could

be replaced by intrinsic function fdividef(x,y) in CUDA.

Intrinsic arithmetic functions are faster but less accurate. After

replacing with intrinsic functions, experiments are carried out

to verify that the numeric error resulted by intrinsic functions

is small enough and would not affect the detection accuracy.

3) Local memory optimization: To calculate the log like-

lihood ratio in (4) and the null statistics in (5), intermediate

results of UTZ are saved into a local array with the size of Nd.

The problem is that the local array is accessed with dynamic

loop indexes, which makes the array allocated in local memory

instead of registers. Local memory actually resides in device

memory, so access to local memory is time-consuming and

increases the pressure of device memory.

To avoid using local memory, instead of saving intermediate

results in local array, we directly add the results to the final

LNW and ρ2NULL, which is illustrated in Fig. 4. The number

of device memory transactions is decreased by the simple

modification.

4) Coalesced memory access: In our original implementa-

tion, SNR values from the SPIIR filtering are stored in the form

of Nt×Nm, where Nm denotes the number of the templates in

a template bank. This means that SNR values of all templates

with the same time are contiguous in memory. However, in

coherent post-processing, SNR values along time of the same

template are accessed at the same time, so memory access

cannot be coalesced and the memory efficiency is low.

In order to accelerate memory access, the SNR matrix

is transposed into the form of Nm × Nt before executing

coherent post-processing. Then memory access to SNR values

can be coalesced and the number of memory transactions is

decreased.

5) Improve occupancy: The theoretical occupancy of the

program is only 50% because of too much register usage.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2658



Thread 0

Thread i:

Compute for

sky direction

Thread

SNR

…

…

MAX

(a) All-sky event search

Block 0 (Candidate 0)

Block i (Candidate i)

Block C-1 (Candidate C-1)

…

…

Foreground

event search

(use all threads)

Background

event search

(use all threads)

Loop for time-shifted

background events

SNR

(b) Before optimization

Block 0

Block i

Last block

…

…

Background event search

Background event search

…
warp 0

warp j

Fore-

ground

event

Search

SNR

…

(c) Remove synchronization

Fig. 3. The implementations of the coherent post-processing

Array P if

Plus to

if

Plus to

Registers

Local

Memory

Global 

Memory

Before optimization After optimization

Fig. 4. Schematic of the local memory optimization

TABLE I
THEORETICAL OCCUPANCIES FOR DIFFERENT REGISTER USAGE

MinBlocksPerSM RegistersPerThread Occupancy

4 ≤64 ≥50.0%
5 ≤51 ≥62.5%
6 ≤42 ≥75.0%
7 ≤36 ≥87.5%
8 ≤32 ≥100.0%

Since it is very hard to reduce register usage by modifying

the algorithm, we consider limiting the register usage by force,

which could be achieved by function qualifiers or compiler op-

tions. Here we use launch bounds in CUDA to constraint

the minimum blocks per multiprocessor (MinBlocksPerSM) to

restrict register usage and increase theoretical occupancy. We

can see from TABLE I how occupancy varies with the register

usage.3

The disadvantage of limiting register usage by force is

that more local memory are used caused by spilled regis-

ters. Although the theoretical occupancy is improved, more

latencies might be brought in by local memory load and

store instructions. The speedup ratios by limiting registers on

different GPUs are illustrated in Fig. 5.

Different devices differ in performance. We can see that

there could be 1.25 times speedup for some older Kepler

devices such as K10 and K40m, while there is no benefit for

the new Pascal devices such as P4 and P100.

IV. EXPERIMENTS

The running time of SPIIR filtering and post-processing

before and after optimization is demonstrated and analyzed

3The number of threads per block is set to 256. For our tested GPUs, the
numbers of registers per multiprocessor are all 64K.
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Fig. 5. Speedup ratio by limiting register usage

TABLE II
TIME USAGE OF THE SPIIR FILTERING

Method
Time (ms)

K10 K40m P4 P100

Original 860.9 464.9 145.2 70.8
VMA 345.4 184.9 41.7 21.4
RODC N/A 172.2 127.7 60.6

VMA+RODC N/A 90.2 41.5 21.4

in this part. All the experiments are repeated for 50 times to

get average execution time. All the testing results are measured

in milliseconds. The detailed results are shown as follows.

A. Results of SPIIR filtering

The number of templates is set to 1024. For each template,

there are 512 IIR filters. The average distance of time delays

of adjacent IIR filters is set to ∆d = 20.

There are four methods to be compared. The first one is the

original implementation without read-only data cache, denoted

as Original. Our method uses vectorized memory access to

reduce the number of memory transactions, denoted as VMA.

Original code with read-only data cache is denoted as RODC.

The final experiment is combining read-only data cache and

our method, denoted as VMA+RODC.

The final results are shown in TABLE II in milliseconds.

Since K10 does not support read-only data cache, the corre-

sponding results are not reported. From the results, we can see

vectorized memory access improves the speed by a factor of

2.5-3.5x on both Kepler and Pascal GPUs. K40m could also

benefit from combining two methods, getting a speedup ratio

of over 5.1x.
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TABLE III
TIME USAGE OF THE COHERENT POST-PROCESSING

Experiment
Time (ms)

K10 K40m P4 P100

Original 1268.64 587.31 261.2 119.23
Remove synchronization 365.87 183.13 76.46 47.71
Arithmetic optimization 173.46 75.1 41.77 17.6

Local memory optimization 88.48 41.32 26.97 9.81
Coalesced memory access 63.11 33.73 16.14 9.35

Improve occupancy 49.68 27.25 16.14 9.35

Final speedup 25.54x 21.55x 16.18x 12.75x
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Fig. 6. Speedup ratio of the optimized coherent post-processing

B. Results of coherent post-processing

When testing the coherent post-processing part, the number

of event candidates C is set to 1000. The number of time-

shifted background events Nbg for each candidate is 100. The

number of sky directions for brute force searching is 12288.

The optimization of coherent post-processing is divided into

five steps: removing synchronizations, arithmetic optimization,

decreasing local memory usage, coalesced memory access, im-

proving occupancy. These optimization methods are performed

step by step. All time usage results are measured in the same

configurations in the above and shown in TABLE III. Better

visualization of speedup ratios of each optimization step is

shown in Fig. 6.

From Fig. 6, we can see that for first four steps of the

optimization, both Kepler and Pascal GPUs benefit a lot and

get a speedup of over 12x. Improving occupancy by limiting

register usage improves running speed of Kepler GPUs but not

for Pascal GPUs. The performance improvement by coalesced

memory access for P100 is very small mainly due to the

high memory bandwidth and the overhead of SNR matrix

transposes.

V. CONCLUSION

In this paper, the SPIIR GW detection pipeline is opti-

mized using recent GPU techniques, to decrease the latency

and improve the throughput. The SPIIR filtering part of the

pipeline is optimized by improving memory access efficiency

with a speedup of more than 2.5x using the same GPU. For

the coherent post-processing part, a speedup of 12-25x on the

same GPU is achieved by employing multiple strategies to

improve memory access and resolve synchronizations between

threads. It is also worth noting that the recent Pascal generation

GPU cards have significant improvement of performance over

the preceding generations. In particular, Pascal P100 card

provides an over 10x better performance over the Kepler K10

card on our applications.
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