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Abstract—Speech prediction plays a key role in many speech
signal processing and speech communication methods. While
linear prediction of speech is well-studied, nonlinear speech
prediction increasingly receives interest especially with the vast
amount of new neural network topologies proposed recently. In
this paper, nonlinear speech prediction is conducted by a special
kind of recurrent neural network not requiring any training
beforehand, the echo state network, which adaptively updates its
output layer weights. Simulations show its superior performance
compared to other well-known prediction approaches in terms
of the prediction gain, exceeding all baselines in all conditions
by up to 8 dB.

I. INTRODUCTION

Speech prediction is a means of using some or all past

speech samples to predict the present sample or frame under

some optimality criterion, often closely related to a model of

speech production. Speech prediction is widely used in speech

coding approaches [1], employing classical linear predictive

coding (LPC) [2], adaptive differential pulse code modulation

(ADPCM) [3], or code-excited linear prediction (CELP) [4],

[5]. Many of the standard speech codecs are based on the

above approaches. LPC is also used in robust speech and

audio decoding [6], [7], artificial speech bandwidth exten-

sion [8], and model-based noise reduction [9]–[12]. Further-

more, an adaptive speech predictor is also applied in acoustic

echo cancellation to whiten the virtual loudspeaker-enclosure-

microphone (LEM) system excitation signal [13].

Using either linear combinations or some nonlinear func-

tions of the observations to serve as the prediction input,

the prediction approaches are accordingly defined as linear

prediction or nonlinear prediction [14]. For linear prediction

of speech, a sample-wise or frame-wise prediction can be

applied, the latter resulting in fixed predictor weights within

an analysis frame, assuming the speech signal to be short-

time stationary [3]. The well-known Levinson-Durbin (LD)

recursion [15], [16], solving the linear prediction problem with

a Toeplitz matrix being involved, is used here to calculate

the linear predictive (LP) coefficients. Instead of sharing the

same predictor weights within a frame, sample-by-sample

linear prediction algorithms adaptively update the predictor

weights under some optimality criterion, being a classical

form of adaptive filtering [14]. The least-mean-square (LMS)

adaptive algorithm updates the filter weights to minimize the

mean squared error, while the normalized least-mean-square

(NLMS) [17] normalizes the filter weight update to avoid that

the gradient depends on the energy of the input. Furthermore,

the recursive least-squares (RLS) algorithm achieves a higher

convergence speed, which is typically an order of magnitude

faster than that of the LMS algorithm, at the expense of

increased computational complexity [14].

Nonlinear speech prediction has received increasing atten-

tion during the past decades [18]–[20], since the production

of the speech signal is actually a nonlinear and nonstationary

process [21]. Accordingly, nonlinear adaptive prediction is

expected to be more powerful than the aforementioned linear

adaptive filtering approaches. Neural networks have been

proven to be an effective way to introduce nonlinearity into

signal prediction. Feedforward neural networks (NNs) have

been applied to the speech prediction task as a non-adaptive

nonlinear predictor [22], with the weights of the neural net-

works being learned from training data by backpropagation

and then fixed, which is of course not very suitable for

the prediction of nonstationary speech signals. In order to

exploit the context of the speech, recurrent neural networks

(RNNs) are used for speech prediction [23], where the internal

memory is introduced by the recurrent topology. Several RNN

topologies have been applied to speech prediction: Pipelined

recurrent neural networks [19], [24], recurrent fuzzy neural

networks [25], and their combinations [26]. However, these

RNNs need to continuously update their neuron weights by

using backpropagation through time (BPTT) [27] or real-

time recurrent learning (RTRL) [28], which suffers from the

gradient vanishing or exploding problem [29]. To solve this

problem during training, RNNs with gating techniques, e.g.,

long short-term memory (LSTM) [29] and gated recurrent

units (GRUs) [30], have been introduced.

Echo state networks (ESNs) [31], as a special kind of

RNN, differ from the above topologies especially in terms

of the weights updating. As can be seen in Figure 1, the

weights W of RNN neurons in the so-called reservoir of ESNs

remain fixed and only the output layer weights wout need to

be adaptively updated, which is actually only a simple linear

regression task [32]. Because of its light computational load

for weight updating, an ESN can be used in an adaptive way

to predict speech and does not need to be trained beforehand,

which is different from the abovementioned RNN topologies.

So far, not much research work has been reported about
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Fig. 1. Topology of the ESN for speech prediction (with direct connections
between the input and the output layers). Solid lines and dashed lines denote
the fixed random weights and adaptive weights, respectively. For an intuitive
viewing the green solid lines are the elements of W, which are randomly and
sparsely connected among the neurons inside the reservoir.

the application of ESNs for speech prediction, although they

possess suitable properties for this very task. In this paper we

accomplish nonlinear adaptive speech prediction by an ESN

and compare the prediction performance to various other linear

and nonlinear prediction approaches.

This paper is structured as follows: In Section II, two base-

line linear adaptive prediction algorithms are briefly reviewed,

namely NLMS and RLS. Section III describes the speech

prediction by the ESN, with some relation to RLS. Section

IV presents the evaluation results and the discussion. Finally,

some conclusions are drawn in Section V.

II. BASELINES

In this section, two baseline adaptive linear prediction

algorithms will be briefly reviewed, serving as baselines later

on, and also easing understanding of ESNs in Section III.

Concerning notations, s(n) denotes the speech signal, with

n ∈ N0 being the speech sample index. Then, for an N-step-

ahead prediction on the basis of a number of Np old samples,

the input vector is denoted as

x(n−N)=[s(n−N), s(n−N−1), · · · , s(n−N−Np+1)]
T, (1)

with N being the sample index units of the prediction distance,

and [ ]
T

being the transpose. Moreover, the weight vector of

the predictor is w(n) = [w0(n), w1(n), · · · , wNp−1
(n)]T, the

output sample of the predictor (prediction) is ŝ(n), and the

present sample to be predicted is s(n).

A. Speech Prediction by NLMS

The cost function of NLMS can be written as

J(n) =
(

ŝ(n)− s(n)
)2

→ min, (2)

where J(n) is minimized by the instantaneous gradient

method [14]. The predictor output is denoted as [14]

ŝ(n) = wT(n)x(n−N), (3)

and the weight vector is recursively updated with the normal-

ized input as

w(n+ 1) = w(n) +
µ

‖x(n−N)‖2 +∆
e(n)x(n−N), (4)

where µ is the step size, ∆ is a regularization parameter, and

e(n) = ŝ(n) − s(n) is the prediction error. Initialization is

done by w(0) = 0, an Np-element zero vector.

B. Speech Prediction by RLS

Instead of minimizing only the instantaneous squared error

e2(n) as in NLMS (or LMS), the recursive least-squares (RLS)

predictor takes all past and current errors into account to form

the weighted least squares cost function as [14]

J(n) =

n
∑

ν=1

λn−ν
(

ŝ(ν) − s(ν)
)2

→ min, (5)

where J(n) is minimized and the term λ is the forgetting

factor putting an exponentially lower weight to the older error

contributions. The error is again e(n) = ŝ(n)− s(n) with the

predictor output

ŝ(n) = wT(n)x(n −N). (6)

The weight vector is recursively updated as

w(n+ 1) = w(n) + e(n)g(n), (7)

with ŝ(n) from (6) to compute e(n), and the gain vector

g(n) =
P(n− 1)x(n−N)

λ+ xT(n−N)P(n− 1)x(n−N)
. (8)

The matrix P(n) is updated as

P(n) = λ−1P(n−1)− λ−1g(n)xT(n−N) ·P(n−1), (9)

where P(n) is initialized with P(0) = ∆−1I and ∆ is the

regularization parameter, I is the identity matrix. Initialization

of the weight vector is done by w(0) = 0, an Np-element

zero vector.

III. NEW SPEECH PREDICTION BY

ECHO STATE NETWORKS

A. ESN Topology

It can be seen in Figure 1 that the ESN in the form that we

employ for speech prediction contains basically three parts:

An input layer with Np neurons, a reservoir with M neurons

and an output layer with a single neuron. The input layer

is linearly connected to the reservoir with an M×Np input

weight matrix Win. In the reservoir, many neurons (M in

number) are randomly and sparsely connected via a delay

unit with themselves and/or with each other, which forms a

random sparse reservoir weight matrix W with the dimension

of M×M . The internal reservoir state y(n) is defined as the
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output vector of the reservoir neurons. It is computed from

the weighted previous reservoir state, mixed with the weighted

inputs according to [32]

y(n) = f (Winx(n−N) +Wy(n− 1)) , (10)

where f = [f1, f2, · · · , fM ]
T

is the set of activation functions

for all reservoir neurons. Then, the output of the ESN, i.e., the

predicted speech sample ŝ(n), can be obtained as

ŝ(n) = fout

(

wT

out(n)ȳ(n)
)

, (11)

where fout is the activation function in the output layer and

wout is the output weight vector. The term ȳ(n) could either

be the state vector ȳ(n) = y(n), or a concatenated vector of

the state vector and the input vector [32], which is denoted

as ȳ(n)=
[

x(n−N)T,y(n)T
]T

with Np+M elements. In the

latter case, a direct linear connection between the input and

the output layer is available, and the output weight vector wout

has Np+M weights instead of M .

In order to adaptively predict the speech signal, the weights

of the ESN need to be updated each sample instant n, as with

the sample-by-sample approaches in Section II. However, only

the output weight vector wout is updated every time index,

while the input weight matrix Win and the reservoir weight

matrix W always remain unchanged after they have been

initialized. It is just because of this unique setting that the ESN

can easily update its output weights using the linear adaptive

algorithm as presented in the following, and at the same time,

introduces a nonlinearity f (and potentially fout) during the

signal prediction.

B. ESN Weights Updating

A kind of extended RLS algorithm is used for the output

weight vector wout updating [33] in this paper. Therefore, the

cost function is the same as in (5) and the error here can

be written as e(n) = ŝ(n)− s(n) with ŝ(n) from (11). To

recursively minimize the cost function (5) the weights vector

is updated as [34]

wout(n+ 1) = Awout(n) + e(n)gex(n), (12)

where gex(n) is an extended gain vector, and A= αI is the

transition matrix. Parameter α≈ 1 assures the stability of the

method and I is the identity matrix with the dimension of

M×M or (Np+M)×(Np+M) based on how ȳ(n) is defined.

The extended gain vector can be expressed as (compare to (8))

gex(n) =
APex(n− 1)ȳ(n)

β + λ+ ȳT(n)Pex(n− 1)ȳ(n)
, (13)

and Pex(n) is recursively updated as

Pex(n) =λ−1APex(n−1)AT−

λ−1Agex(n)ȳ
T(n) ·Pex(n−1)AT+βqI,

(14)

where Pex(n) is also initialized with Pex(0)=∆−1I and ∆ is

the regularization parameter, β and q are tuning parameters.

The weight vector is initialized as wout(0) = 0, a zero vector

with M or Np+M elements.

Method NLMS RLS

Parameter µ=1.70, ∆=0.27 λ=0.995, ∆=0.01

Method ESN

Parameter λ=0.999 β=0.25 q=0.30 ∆=0.007

TABLE I
PARAMETER CHOICES FOR Np=10.

IV. EVALUATION AND DISCUSSION

A. Simulation Setup

In this section, the ESN-based nonlinear adaptive predictor

is investigated for the prediction of speech signals, and some

other baseline speech prediction approaches are also simulated

for comparison. All approaches are implemented as one-step-

ahead prediction (i.e., N = 1), except for the LD recursion,

which is a one-frame-ahead prediction, with the frame shift

being the same as the frame length. Prediction performance is

evaluated using the prediction gain [3]

Gp = 10 · log
10

E
{

s2(n)
}

E
{

(s(n)− ŝ(n))
2

} [dB] , (15)

where E {} is the expectation operator. American English

speech files with 16 kHz sampling rate, 16-bit PCM, from

the NTT database [35] are used for the speech prediction

simulations, in which 4 female speakers together with 4 male

speakers are included, each speaker represented with 12 speech

files of about 8s duration. All speech files are normalized to

the range s(n)∈ [−1, 1].

Concerning the settings of the ESN, the elements in the

input weight matrix Win are uniformly distributed random

values between –1 and 1. In the reservoir, M =100 neurons

are used and 10% of them are randomly connected, which

forms the sparse reservoir weight matrix W. Furthermore, the

spectral radius, which is the maximum of all eigenvalues of the

reservoir weight matrix, is set to be 0.5 to ensure the property

of asymptotical stability, so that the ESN is uniquely controlled

by the input and the effect of the initial states vanishes [36],

[37]. The sigmoid function is used for all activation functions

fm, m∈{1, 2, · · · ,M}, in the reservoir, and a linear function

fout is used as the activation function for the output layer.

Additionally, the input layer is also directly connected to

the output layer, i.e., ȳ(n) =
[

x(n−N)T,y(n)T
]T

, since

this was found to be advantageous. For the parameters being

responsible for the ESN weights updating, we choose α= 1
and λ, β, q and ∆ are selected depending on the number

of the input nodes Np. These hyper-parameters are found

separately to optimize the prediction gain (15) on the French

and German speech files of the NTT database (development

data). To illustrate the result of this optimization, see Table I

for more details in the case of Np=10. Please note that, since

the ESN is used in an online fashion to predict the speech

signal, there is no need to train the actual ESN beforehand.

The settings of the baseline prediction approaches are as
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Fig. 2. Prediction gain Gp (in dB) results for a different number Np of
past speech samples (for LD: prediction order). Linear approaches (i.e., RLS,
NLMS and LD) and nonlinear approaches (i.e., ESN and NN) are blue and
red, respectively. The adaptive approaches (i.e., ESN, RLS and NLMS) and
non-adaptive approaches (i.e., NN and LD) are shown as solid and dashed
lines, respectively.

follows: For NLMS and RLS, the step size µ, the regular-

ization parameter ∆, and the forgetting factor λ are selected

depending on the number of used input samples Np. These

hyper-parameters are also selected separately to optimize the

prediction gain (15) on the French and German development

data. See again Table I for details on parameters for Np=10.

For the frame-based speech prediction (LD), a 10 ms duration

frame for various linear prediction filter orders is chosen, while

the frame shift is the same as the frame length1, i.e., 10 ms. A

shallow feedforward NN is also implemented for the speech

prediction in an offline fashion, which is first to be trained and

then to be used as the predictor with the trained NN. The NN

used here has one hidden layer with a number (in the range

of 20 to 40) of the neurons dependent on the number of input

nodes Np. The NN is trained and validated on a mixture of

French and German speech files of the NTT database, with

80% and 20% of them constituting the training set and the

development set, respectively.

B. Discussion

The simulation results with Np ∈ {1, 2, · · · , 20} are shown

in Figure 2, in which each result is averaged over 96 American

English speech files. The prediction performance for the

different approaches in terms of the prediction gain basically

get better with increasing Np, with the exception of NLMS

having its optimum at Np = 10. The ESN shows the best

performance compared to all the other approaches among all

the Np values. RLS shows almost comparable gain to the

1Note that for the LD approach, we employ Np as the prediction order. This
notational choice is justified by the fact that for NLMS and RLS, Np is not
only the number of used input samples, but also the prediction order as can
be seen in (3) and (6). Note also that an 8 ms and 32 ms frame length/frame
shift led to a lower performance.

ESN for large Np; however, in small Np conditions the ESN

achieves a considerably higher prediction gain (about 8 dB

when Np=1). Note that both RLS and ESN approaches have

virtually infinite memory due to their recurrent structure. The

NN approach achieves no better prediction performance than

RLS (and even the LD recursion algorithm) probably because

of its non-adaptive property, although it is also a nonlinear

predictor. On top of that there is no surprise that the NLMS

method is also among the weak-performing ones.

From the simulation results above, it can be stated that the

ESN shows exceptional performance for speech prediction,

outperforming all baselines in all conditions. Even for a small

number of input nodes Np the new ESN-based speech predic-

tor still shows strong performance. These are quite attractive

properties for many applications requiring the prediction of

speech.

V. CONCLUSIONS

In this paper, a nonlinear adaptive predictor using a simple

echo state network (ESN) is applied to speech prediction.

The output weights of the ESN are updated with an extended

RLS algorithm, while the input weights and recurrent neurons

stay unchanged during the prediction and do not even require

training beforehand. Simulations show a prediction gain ad-

vantage of up to 8 dB compared to the best baseline method,

exceeding its performance in all test conditions. Our ESN-

based speech predictor can be applied in any context where

speech prediction is used today.
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