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Abstract—Steady-state visual evoked potentials (SSVEP) are
one of several underlying signals used in various electroen-
cephalography (EEG) based applications, including brain-
computer interface (BCI) technology. Through oscillating visual
stimulus at distinct frequencies, an SSVEP can be detected
by EEG at occipital electrodes on the scalp, with distinct
visual stimuli representing distinct choices. Rapid, accurate
detection and classification of these signals is crucial for real-
time analysis in SSVEP-based applications. However, signal
analysis and interpretation of SSVEP events may be hindered in
children due to the significant variability in electrophysiological
signals throughout development. Recently, multi-way tensors
have been shown capable of exploiting higher-order interactions
present in the naturally multi-dimensional EEG data. Using
tensors as tools to identify latent structures between varying
maturational signals thus may provide a potential solution for
rapid classification of SSVEP signals in children at different
developmental stages. The presented methodology builds upon
previous tensor-based SSVEP analysis and extends it for the
first time to developing paediatric populations. Results from a
binary SSVEP classification task of n = 40 children age 8-
11 are reported to be significantly greater than chance, at 67-
74% accuracy across multiple training and testing blocks. The
findings support that tensor decomposition could provide flexible
advantages capable of accommodating developmental differences
across children and lay groundwork for future tensor analysis
in SSVEP-based applications, like BCIs.

Index Terms—multi-way analysis, tensor analysis, SSVEP,
child development, brain-computer interface

I. INTRODUCTION

Brain-computer interfaces (BCI) are an emerging technol-
ogy, offering a means for non-muscular control of output
devices, like computers, through direct analysis of brain
signals and patterns [1]. A common signal exploited in
BCI technology is the steady-state visual evoked potential
(SSVEP) [2], [3], in which several selection options are as-
sociated with visual objects oscillating at distinct frequencies
[2]. These oscillations cause a synchronization of the natural
brain rhythms over the occipital region of the brain, and can
be detected using scalp electrodes via electroencephalography
(EEG). Such signals are then associated with specific selec-
tion choices, e.g. letters on a screen [2].

The direct nature of elucidating SSVEP signals is enticing
for building BCI technologies for complex populations, like
maturing children. Considering the scope of structural and

functional changes associated with development, designing
appropriate BCIs for children presents multiple challenges [4],
[5]. One hurdle facing paediatric BCIs is the ongoing progres-
sion of electrophysiological signals and networks identified
by the EEG throughout development [6], [7]. Previous work
on SSVEP-based paediatric BCIs demonstrated inherent age-
specific responses in SSVEP-based BCI tasks [8]. Results
indicated a link between the brain’s ability to synchronize
spontaneous and steady-state evoked oscillations with its
maturation throughout childhood [8], [9]. A potential avenue
to incorporate these inherent maturational differences within
EEG signals is through the use of multi-way tensor analysis
[4], [10], by means of maintaining and investigating the
naturally occurring higher-order structure of EEG data across
developing subjects.

Tensor analysis extends traditional matrix (two-way) ana-
lytic techniques to its multi-linear correlate, thereby allowing
the simultaneous analysis of three or more domains (also
called modes or ways) of data [3], [11]. For example, ten-
sor analysis of EEG data maintains the inherent relation-
ships between the [Spatial] (i.e. channel),[Temporal] and
[Frequency] domains of the EEG, whereas matrix-based
analysis would only inform on some two-combination of
those domains [3]. Thus higher-order EEG structural informa-
tion which is typically lost in matrix analysis is maintained,
thereby providing further insight into the latent relationships
within the EEG data [3].

Exploiting advantages gained by tensor analysis has been
previously demonstrated as an effective tool in SSVEP-based
BClIs for adults [3], [12], [13]. Additionally, tensor-based
BCI results have established tensors as a potential tool for
avoiding the subject-specific calibration in BCI classification
[14]. Reducing the calibration time for a subject thus leads to
improved BCI set-up speed and increases its child-friendly
nature [4]. However, little previous work has been done
to adapt BCI paradigms specifically to children [4], [5].
Therefore, this paper outlines for the first time initial steps
in adjusting SSVEP signal processing techniques common in
BCI paradigms to accommodate paediatric populations. The
work proposes an effective tensor analysis scheme to classify
binary SSVEP selection tasks in children, and demonstrates
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its potential using a publicly available dataset.

II. MATERIALS AND METHODS

This paper follows tensor notation defined in [15]. Sum-
mary of key notation includes calligraphic upper case letters
(A) as tensors, boldface upper case letters (A) as matrices,
lower case (a) as vectors, A as the ith-mode matrix of a
tensor, with operations o as the vector outer product, ® as
the Kronecker tensor product, ® as the Khatri-Rao (column-
wise Kronecker) product and T as the Moore-Penrose pseudo
inverse.

Dataset and pre-processing

Data in this study was derived from the publicly available
EEG dataset provided by the Child Mind Institute [16]. EEG
data was recorded from a high-density 129-electrode hydro-
cel EEG cap for n = 44 children and pre-processed as
described in [16]. Multiple recordings were taken for each
child covering several resting and task-oriented paradigms.
In particular, the Contrast Change Paradigm (CCP) was used
for SSVEP data collection. The CCP design allowed isolation
of several specific brain processing phenomena, including an
information encoding phase reflected by an induced SSVEP at
20 and 25 Hz for left and right object selection, respectively
[16]. The subject was instructed to pay attention to one
of the objects based on increasing contrast and push the
corresponding left/right button. Full details on the CCP can be
found in [16]. A random set of 24 distinct trials of selection
(12 left, 12 right) were run in a block of the CCP, and each
child attempted to complete 3 CCP blocks. Of the available
data, n = 40 children were able to complete at least 2 of the
3 blocks with good responses, and were therefore selected for
classification analysis in this paper.

Data for the SSVEP was processed as follows. For each
subject, a trial was defined as the 2 seconds prior to a
button press. Spectral power in the frequency range 17-30Hz
was calculated for each trial across 18 occipital channels
using the Fieldtrip toolbox for MATLAB [17]. Trials which
had poor EEG channel interpolation and/or abnormally high
amplitude variance (i.e. a 10-fold difference) were excluded
from analysis. The SSVEP data was labelled as either left or
right, based on the corresponding button press.

Tensor construction, decomposition and modelling

From the clean SSVEP data, a 4-mode tensor X was built
with domains [T'rial] X [Spatial] x [Frequency] x [Subject].
The [Trial] domain was structured such that the first 12
elements were left-trials, followed by 12 right-trials. This re-
moved the randomized left/right trial order in any given CCP
block, allowing for the [Subject] domain to be compared
in the constructed tensor. Furthermore, the [Subject] domain
was arranged from youngest to oldest to account for potential
developmental differences associated with age, similar to [10].

The constructed tensor X was then decomposed into a 3-
component model using Parallel Factor Analysis (PARAFAC)
[15], [18] via the N-way and Tensorlab toolboxes for MAT-
LAB [19], [20]. The PARAFAC decomposition models a
tensor X' as the sum of component rank-one tensors, with
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Fig. 1. PARAFAC decomposition for a generic 3-way tensor X into N

component matrices (R). Only components of the same color interact across
the N domains (i.e. 1,1 with z1 2 etc.).

components interacting on a strict 1:1 basis between domains

as in Figure 1. Equation (1) shows a three component decom-

position for our 4-mode tensor A with domain matrices A®
(n) o _ .

and elements a;;’,n= 1,2,3,4 as:

aV o a,E?) o af’) o a$.4) @))

Non-negativity was enforced in the [Trial],[Spatial]
and [Subject] domains, with orthogonality imposed on the
[Frequency] domain. The non-negativity constraints im-
proved interpretation of the resulting component matrices,
while orthogonality guaranteed linear independence between
factors representing the distinct frequency SSVEP peaks at
20 and 25 Hz. A 3-component decomposition was selected so
distinct factors for the two SSVEP signals of interest could
be uniquely described, with the third factor accounting for
any other variability or irrelevant noise. Explained variance
for the constrained 3-component model was approximately
41% as compared to the 43% explained variance without
constraints. Using more components for decomposition did
not significantly improve the explained variance of the model
(5-components had 42% explained variance), and introduced
a greater risk of overfitting in the [Subject] domain [10].
Using fewer than 3 components would mean the PARAFAC
model could not separate the desired signals distinctly from
each other and noise.

Projection and Classification

For each CCP-block of data, the whole block was des-
ignated as either training or testing. For training, the CCP
SSVEP data was analyzed using the above tensor analysis,
providing resultant component matrices, X ™ in each domain.
Of the n = 40 children from pre-processing, unique subsets
of n = 34,36, 35 children completed CCP-blocks 1, 2 and
3, respectively. Testing consisted of binary classification on
each trial individually for each subject into ‘left’ or ‘right’
categories. This was similar to work done in [14], where an
auditory BCI distinguished between two tones at different
frequencies. Properties of new trials were compared to the
target tones based on a leave-one-out average response to the
tones over all other trials available. In the present work, in
lieu of grand averaging, new weights are estimated through
direct projection as outlined in [10], [21], [22] in order to
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maintain as much information as possible. The key steps in
estimating the new weights via direct projection are included
here for clarity. Full details can be found in [22].

The tensor X was unfolded along the component [Subject]
domain X, to define a new-subject encoding matrix (W):

W= (X® o X@)7)t 2)

where X for n = 2,3 holds the estimated interactions
between the [Spatial] and [Frequency] component domains,
respectively. Since each trial is independently classified (as
would be expected in a real BCI setting), information from the
[T'rial] domain could not be explicitly included in W. This
is due to direct projection requiring 1:1 matched elements
across each projected domain, while a 1:24 ratio exists for
the given [T'rial] domain. However, due to the strict nature
of how components interact across domains in PARAFAC,
the estimated interactions in W have inherited properties
corresponding to [T'rial] (and [Subject]) domain structures,
as outlined in Figure 2. Then, any new incoming [Subject]
EEG data can be multiplied by the encoding matrix W in
order to estimate the new data’s [Spatial] and [Frequency]
weights.

III. RESULTS

Tensor analysis was performed across the six combinations
of the 3-block CCP data (e.g. Blockl-Train, Block2-Test;
Block1-Train, Block3-Test; etc.). For each, trials for every
subject were selected randomly for testing via direct projec-
tion. New subjects from the testing tensor ) were then pro-
jected onto the common interactions held by W to estimated
weights w, using Equation (2). These weights informed on
the new subject’s status with respect to the extracted tensor
components. Knowing which components in the PARAFAC
model reflected the noise, left and right SSVEP signals (as
seen in the bottom-left [F'requency| domain panel of Figure
2) permitted each given trial to be classified as ‘left’ or ‘right’
based on the highest corresponding component weight in w,,.
Ground truth was taken to be the actual button press for the
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Fig. 2. Example of a constrained 3-component SSVEP decomposition from
the 4-mode CCP of Block 1. In each component domain, direct interaction
occurs only between the same factors, e.g. red relates to red across all panels.
In the example, the [Frequency] domain captures noise and target SSVEP
signals at 20,25 Hz in the red, blue and yellow factors respectively. Similar
decompositions can be found for CCP blocks 2 and 3.
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Fig. 3. Box-plot results of the average total, left-target and right-target
accuracy across subjects and trials. Each panel shows individual train-test
block accuracy across all children who completed the given CCP block
(n = 34,36,35 for blocks 1,2 and 3, respectively). Total accuracy was
relatively consistent across CCP combinations, at approximately 70%. Outlier
subjects are indicated beyond the box-plot range by a + symbol.

trial. Left, right and total accuracy were calculated for each
child based on the mean across all trials. Figure 3 shows
a box-plot of resulting accuracy across all children and all
trials for each CCP-block combination. Classification above
66.7% is considered to be significantly greater than chance at
p = 0.05 for a binomial distribution of 24 trials with equal
classification probability.

Figure 4 illustrates the raw power spectrum for occipital
channels in two representative children during left-selection
SSVEP (20 Hz) tasks. The results include a subset of 6 left-
trials and an ‘overall mean’ comparison between prototypical
‘good SSVEP’ and ‘poor SSVEP’ response children.

The results indicate the extracted tensor components are
relatively robust for classification, even when the target signal
is not immediately discernible like in Child 2 of Figure 4.
For the example children, the proposed tensor classification
scheme was 100% accurate in predicting any given trial as
‘left’ in Child 1, and 64% accurate for Child 2. By utilizing
information from both [Trial] and [Subject] domains in the
original training tensor, the PARAFAC model decomposition
can implicitly underscore which trials (and subjects) are
representative (or not) of the signals of interest. This is
evident when comparing the loading contributions for the
left-selection (20 Hz) signal of Child 1 and Child 2 in the
[Subject] domain panel of Figure 2. Child 1 contributes ap-
proximately 15x more to defining the extracted left-selection
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Fig. 4. Comparison of power at occipital channels between two children
during left-selection (20 Hz) tasks in CCP Block 1. The left-selection SSVEP
task would expect synchronization at 20 Hz. The left column shows a
representative child with a clear left-selection SSVEP signal, while the right
column shows a child with less clear left-selection SSVEP signals. The
average spectral power across trials for each channel is shown in the top
panel of both columns, with the smaller panels illustrating a random subset
of the individual trials. Left-task classification accuracy for Child 1 was 100%
and for Child 2 was 64% using the proposed tensor analysis.

component compared to Child 2 (I = 0.24 for Child 1,
Il = 0.016 for Child 2). Despite this large disparity, left-
selection trials from Child 2 were still correctly identified
approximately 64% of the time. This indicates that accuracy
rates for signals of interest can largely be maintained for
noisy, unclear trials.

Also of interest is that significant correlation exists between
a child’s contribution in a given decomposition and their
reported classification accuracy score (Pearson’s correlation,
with p-values p = 0.0055,p = 0.0002 for total accuracy
of left and right trials, respectively). However, this corre-
lation held only when considering the signals of interest.
No correlation was found between contribution to noise and
any accuracy (with p-value, p = 0.9895). Correlation was
calculated only for children common across all CCP Blocks.

IV. DISCUSSION

The results from this study outline a tensor analysis
scheme for binary classification which is capable of analyzing
SSVEP data from children using direct projection. Through
projection, the need for a subject-specific calibration step
is removed. This reduces some of the set-up and calibra-
tion down time associated with traditional BCI tasks, and
would thereby improve the user-experience for children [4].
Additionally, through isolating ‘noise’ into a single com-
ponent, the tensor analysis is able to minimize the impact
of continually developing electrophysiological states present
throughout childhood [4], [23]. Finally, by including a [T'rial]
domain, tensor analysis has huge potential for paediatric use
because it can emphasize the trials in which a child does
well, while minimizing the overall impact of failed, aborted

or unsuccessful trials. This has strong implications in BCI
paradigms, as children are more likely to abort or fail a task
than adults [4].

The tensor analysis showed significant classification capa-
bilities despite potential differences in development between
the children. Of note, by ordering the [Subject] domain to be
increasing in age from 8-11 years old, general developmental
information can be elucidated. For example, it appears that the
latter half of subjects in Block 1 (seen in bottom right panel of
Figure 2) holds the largest contributions to each component.
In Block 1, subjects 1-17 were age 8-9, while subjects 18-34
were age 10-11. In this regard, contributions to components
from the older children trended towards being more domi-
nant (especially regarding the noise factor component) than
younger children. From a developmental point-of-view, this
indicates that the individual children who performed best (i.e.
contributed most significantly to the PARAFAC component
model) were, unsurprisingly, often the older children (i.e. the
latter half of the [Subject] domain in Figure 2). This can be
seen clearly by Child 24, Child 28 and Child 31 in Figure 2
for left-selection task contribution (blue factor).

However, not all of the older children contributed more
than the younger subjects. This highlights a few important
developmental considerations in the results. First, the child’s
chronological age may not necessarily reflect their develop-
mental state in its entirety. Second, by emphasizing children
(and trials) which contributed most to target signals of in-
terest (e.g. 20/25 Hz SSVEP signals) as well as identifying
which children were mainly dominated by non-target signals
(e.g. noise), the tensor analysis scheme can capture latent
information on the developmental state of the children. To
this end we postulate that the children ahead (behind) in
development are reflected by larger (smaller) contributions
to the tensor components. Then, if we consider the strong
correlation between relative component contribution in the
PARAFAC model and the classification accuracy, tracking the
development of a child across sessions/interventions/therapies
may be possible using the classification accuracy as a guide.
This idea could be explored further in future investigations.

Given the simple nature of the classification, i.e. taking
whichever new weight w, is largest, the proposed tensor
analysis scheme could be extended easily to decompositions
with more than 2 target signals. Additionally, as classification
is based on a rapid matrix multiplication of new subject trials
by the encoding matrix, the proposed work could be readily
introduced into real-time BCI systems. The computational
complexity required for such endeavours would be relatively
low. The major computational bottleneck occurs during the
decomposition step, which could be done ‘offline’, prior to
the ‘online’ classification element. The specific computational
complexity would depend on the algorithm used (see [24]
for details), but using tools like Tensorlab provides linear
complexity in the decomposition algorithm [20]. The ‘online’
complexity is trivial, as the direct projection required for the
classification element only requires simple matrix multiplica-
tion. Demonstrating the proposed tensor framework for these
applications are another avenue for future work.
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The presented work has some limitations to consider. When
designating a specific trial as ‘left’ or ‘right’, the recorded but-
ton pressed was considered to be the ground truth. However, it
is possible that some children may have focused on one object
(left or right) and accidentally pressed the other button. As
the analysis is based on a public dataset, and minimal direct
oversight was given for each trial analyzed, it is possible some
trials could have suffered from this discrepancy. However, the
effect of such an error is likely to be small considering that
the decomposition results provide flexibility in the [Trial]
domain for contributions to left/right components. With the
significant classification results reported, the overall tensor
analysis scheme remains quite promising.

Additionally, the public dataset used for analysis in this
paper was not necessarily developed with the intent of SSVEP
analysis and classification. However, the EEG task paradigm
was designed in such a way that the relevant information was
available for us to pose the questions and analysis presented
in this paper. Subsequent investigations could expand upon
this preliminary work through demonstrating its validity in
an actual SSVEP-BCI setting.

V. CONCLUSION

This paper outlined a tensor analysis structure for clas-
sifying SSVEP signals of interest from a paediatric EEG
dataset. The work demonstrated how a 4-mode tensor with
domains [Trial] x [Spatial] x [Frequency] x [Subject], could
be utilized for direct SSVEP classification between two trial
categories, ‘left’ and ‘right’. The 4-D tensor was modelled
using a constrained 3-component PARAFAC decomposition,
where orthogonality constraints guaranteed independence of
the SSVEP signals of interest. Extracted components from
the decomposition were used to define an encoding matrix for
projecting new subjects (and new trial) data onto the latent
structural interactions found in the training tensor. Results
found left/right trial classification was approximately 70%
accurate across combinations of training and testing blocks.
Additionally, the tensor analysis was shown to be suitable
even in children with extremely noisy trials. Exploiting the
properties inherent in tensor analysis thus may provide a ben-
eficial framework with boons for paediatric focused SSVEP
analysis, e.g. in SSVEP-based BCI. Advantages via the
outlined tensor framework includes the potential for dealing
with varying noise across a developmental range of children,
thereby accounting for varying states of development across
children. Additionally, the tensor scheme offers a means
for rapid classification without a subject-specific calibration
phase improving suitability for paediatric subjects. Together,
these results demonstrate tensor analysis as a promising tool
for paediatric SSVEP-analysis applications.
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