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Abstract—Speech signals, captured by a microphone array
mounted to a smart loudspeaker device, can be contaminated by
ambient noise. In this paper, we present an online multichannel
algorithm, based on the recursive EM (REM) procedure, to
suppress ambient noise and enhance the speech signal. In the
E-step of the proposed algorithm, a multichannel Wiener filter
(MCWF) is applied to enhance the speech signal. The MCWF
parameters, that is, the power spectral density (PSD) of the
anechoic speech, the steering vector, and the PSD matrix of the
noise, are estimated in the M-step. The proposed algorithm is
specifically suitable for online applications since it uses only past
and current observations and requires no iterations.

To evaluate the proposed algorithm we used two sets of
measurements. In the first set, static scenarios were generated by
convolving speech utterances with real room impulse responses
(RIRs) recorded in our acoustic lab with reverberation time set
to 0.16 s and several signal to directional noise ratio (SDNR)
levels. The second set was used to evaluate dynamic scenarios by
using real recordings acquired by CEVA “smart and connected”
development platform.

Two practical use cases were evaluated: 1) estimating the
steering vector with a known noise PSD matrix and 2) estimating
the noise PSD matrix with a known steering vector. In both use
cases, the proposed algorithm outperforms baseline multichannel
denoising algorithms.

I. INTRODUCTION

Noisy speech can be difficult to understand for both humans
and machines, and can lead to listening fatigue. Multichannel
noise reduction has become a major research topic in the past
decade due to available multichannel arrays (frequently used
in smart loudspeaker devices) and computational power.

The minimum variance distortionless response (MVDR)
beamformer (BF) is a popular noise reduction algorithm [1]–
[4]. The MVDR BF requires two parameters: 1) the steering
vector of the speakers and 2) the noise PSD matrix. Usually,
the noise PSD matrix is estimated using speech absence
segments. These segments can be detected using perfect voice
activity detector (VAD). The steering vector of the speaker
can be estimated using a speaker localization algorithm like
the steered response power (SRP)-phase transform (PHAT) [5].
In the presence of directional noise, the SRP-PHAT tends to
be biased.

In the past, the EM algorithm [6] was used for noisy
speech enhancement [7]–[10]. In [4], the multichannel joint
dereverberation and denoising problem is addressed, and a

procedure for simultaneous estimation of all relevant beam-
former parameters is proposed. The anechoic speech and the
late reverberation are defined as the hidden data. Consequently,
the estimation of the anechoic speech is obtained in the E-step
using a MCWF, while the PSD of the anechoic speech, the
early transfer functions (ETFs) (actually, their corresponding
normalized relative early transfer functions (RETFs)), the
time-invariant spatial coherence matrix of the late reverbera-
tion, and the PSD of the late reverberation are estimated in
the M-step. The algorithm operates in a batch mode and is
not appropriate for online requirements.

An REM algorithm is an implementation of the EM iterati-
ons in a recursive manner. Two versions of the REM algorithm
are described in the literature, one of which was proposed by
Titterington [11] and the other by Cappé and Moulines [12].
The Titterington recursive EM (TREM) version is based on
implementing the M-step by the Newton method; the Cappé
and Moulines recursive EM (CREM) version is based on the
time-smoothing of the auxiliary function obtained through the
E-step. Both variants were utilized in [13] to derive speaker
tracking schemes by processing the pair-wise relative phases
between each pair of microphones. The problem of speech
enhancement and noise reduction was not addressed in this
paper.

In this paper, an online REM-based multichannel algorithm
for suppressing the ambient noise and for enhancing the speech
signal is presented. In the E-step of the proposed algorithm,
an MCWF is applied to enhance the speech signal. The
MCWF parameters (that is, the PSD of the anechoic speech),
the steering vector, and the time-varying PSD matrix of the
noise, are estimated in the M-step. These steps are recursively
implemented by applying the REM procedure, which uses only
past and current frames, and requires only a single iteration
per time instant. Experimentally, we have realized that the
proposed REM procedure cannot converge well if an estimate
of the entire set of parameters is required. The cases that were
found to be practical are: 1) estimating the steering vector
with a known noise PSD matrix and 2) estimating the noise
PSD matrix with a known steering vector. These cases were
tested using real RIR recordings from the Bar Ilan university
(BIU) acoustic lab and real recordings using the CEVA-DSP
“smart and connected” development platform. It is shown
that the proposed algorithm outperforms baseline multichannel
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denoising algorithms.
The remainder of this paper is organized as follows. In

Section II, we formulate the noise reduction problem. In
Section III, the REM procedure for our statistical model
is derived. In Section IV, the performance of the proposed
algorithm is evaluated. Section V is dedicated to concluding
remarks.

II. PROBLEM FORMULATION

In the following section, the multichannel noise reduction
problem is formulated. The observations consist of speech in
a noisy environment and is modeled in the short-time Fourier
transform (STFT) domain as:

Yi(m, k) = Xi(m, k) + Vi(m, k), (1)

where Yi(m, k) denotes the ith microphone observation at
time index m and frequency index k, Xi(m, k) denotes the
speech component, and Vi(m, k) denotes the ambient noise.
Here Xi(m, k) is modeled as a multiplication between the
speech received by the first microphone and the direct transfer
function (DTF), that is:

Xi(m, k) = Gi(m, k) X1(m, k), (2)

where Gi(k) is the DTF. Note that, in the general case, the
relative transfer function (RTF) or the RETF can be used as
in [4]. The DTF is constructed by the time difference of arrival
(TDOA) between the microphones:

Gi(m, k) = exp

(
−j 2πk

K

τi(m)

Ts

)
(3)

where τi(m) is the TDOA between the ith microphone and
first microphone, Ts is the sampling time, and K is the number
of frequency bins. For uniform linear array (ULA), the TDOA
equals τi = (i − 1)d cos(ϑ(m))

c , where d is the microphones
inter-distance, c is the sound velocity, and ϑ(m) is the angle
related to the RTF. Concatenating the N microphone signals
in a vector form yields:

y(m, k) = x(m, k) + v(m, k) (4)
x(m, k) = g(m, k)X1(m, k), (5)

where

y(m, k) =
[
Y1(m, k) Y2(m, k) . . . YN (m, k)

]T
x(m, k) =

[
X1(m, k) X2(m, k) . . . XN (m, k)

]T
v(m, k) =

[
V1(m, k) V2(m, k) . . . VN (m, k)

]T
g(m, k) =

[
G1(m, k) G2(m, k) . . . GN (m, k)

]T
.

The ambient noise is modeled as a zero-mean Gaussian vector
with PSD matrix Φv(k):

f (v(m, k);Φv(m, k)) = NC(v(m, k); 0,Φv(m, k)). (6)

where:

NC(z;0,Φ) =
1

πN |Φ|
exp

(
−zH Φ−1z

)
, (7)

where z denotes a Gaussian vector, Φ is a PSD matrix, and
| · | denotes the matrix determinant operation. The signal
at the first microphone X1(m, k) can also be modeled as
a zero-mean Gaussian process with variance φX(m, k) =
E{|X1(m, k)|2}. The parameter set for the k-th frequency bin
is:

θ(k) = {φX(m, k),g(m, k),Φv(m, k) ∀m} . (8)

The speech component and the ambient noise are assumed
to be mutually uncorrelated. This means that the observed
signal vector is also a zero-mean Gaussian vector, and that
the PSD matrix of the observed signals is equal to the sum
of the individual PSD matrices of the speech component and
ambient noise. The PSD matrix of the observations is given
by:

Φy(m, k) = φX(m, k)g(m, k)gH(m, k) + Φv(m, k). (9)

Our goal now is to maximize the probability density function
(p.d.f.) of the measurements with respect to the parameters,
that is, to apply the maximum likelihood (ML) criterion
yielding θ(k):

θML(k) = argmax
θ

∏
m

f(y(m, k); θ(k)) (10)

where f(·) denotes p.d.f. and statistical independence is assu-
med between each time-instance. The maximization operation
might be a cumbersome task. To simplify the derivations, the
expectation-maximization (EM) formulation is adopted in the
following section. Moreover, to achieve online estimation of
the parameter set and to maintain smooth estimates over time
of the speech signal, the REM algorithm is adopted.

III. THE REM ALGORITHM

In this paper, we adopt a recursive procedure based on the
CREM algorithm [12]. The CREM is a recursive version of
the batch EM algorithm. To implement the EM algorithm,
the hidden data should be defined. We are proposing to
define X1(m, k) as the hidden data. The E-step evaluates
the auxiliary function, while the maximization-step maximizes
the auxiliary function with respect to the set of parameters.
This batch EM procedure converges to a local maximum of
the likelihood function of the observation [6]. To track time-
varying parameters and to satisfy the online requirements, the
CREM [12] algorithm is adopted. This algorithm is based on
the time-smoothing of the auxiliary function obtained through
the E-step and employing a single maximization per time-
instance. In the following sections, the frequency index k is
omitted for brevity whenever no ambiguity arises.

A. Recursive Expectation Maximization steps

CREM is based on smoothing the auxiliary function along
the time axis and executing single maximization per time
instance. The smoothing operation is given by [12, Eq. (10)]:

QR

(
θ; θ̂(m)

)
= αQR (θ; θ(m− 1)) + (1− α)Q

(
θ; θ̂(m)

)
,

(11)
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where the instantaneous auxiliary function of the m-th obser-
vation is given by:

Q
(
θ; θ̂(m)

)
= E

{
log f(y(m), X1(m); θ)|y(m); θ̂(m)

}
,

(12)
where QR

(
θ; θ̂(m)

)
is the recursive auxiliary function, and

θ̂(m) is the estimate of θ at the m-th time instance. The
(m + 1)th parameter set estimate is obtained by maximizing
QR

(
θ; θ̂(m)

)
w.r.t. θ.

The joint p.d.f. of the observations and the clean speech
(that is, the complete data) is given by:

f(y, X1; θ) = NC(y− gX1, 0,Φv)NC(X1, 0, φX). (13)

where the independence between the speech and noise was
invoked.

The E-step in the m-th time instance boils down to the
calculation of Q

(
θ; θ̂(m)

)
. Similarly to [4], it is sufficient to

estimate the following sufficient statistics:

1. X̂1(m) =φX(m)gH(m)Φ−1
y (m) y(m) (14a)

2.
(( hh
|X1(m)|2=|X̂1(m)|2 + φX(m) (14b)

− φ2
X(m)gH(m)Φ−1

y (m)g(m), (14c)

where Φy(m) is defined by (9).
After some algebraic steps, the implementation of (11) is

summarized according to the following recursive equations:

1. ηR(m) = αηηR(m− 1) + (1− αη)
(( hh
|X1(m)|2 (15a)

2. ζR(m) = αζζR(m− 1) + (1− αζ)y(m)X̂∗
1 (m) (15b)

3. ZR(m) = αZZR(m− 1) + (1− αZ)Ẑ(m), (15c)

where ηR(m), ζR(m), and ẐR(m) are recursive sufficient
statistics, and

Ẑ ,
((((( hhhhh

(y − gX1)(y − gX1)
H

= yyH − gX̂1y
H − yX̂∗

1 gH+
((hh
|X1|2 ggH. (16)

Similarly to the batch mode EM, the M-step is obtained
by maximizing QR

(
θ; θ̂(m)

)
with respect to the problem

parameters:

1. φX(m+ 1) = ηR(m) (17a)

2. g(m+ 1) =
ζR(m)

ηR(m)
(17b)

3. Φv(m+ 1) = ZR(m). (17c)

B. Practical Considerations

Several practical aspects are discussed in the sequel.

1) Fitting the Steering Vector: The estimated DTF g can be
tuned to the closest feasible steering vector by a least squares
(LS) fitting:

g(m)← argmin
g̃
||g(m)− g̃||2 (18)

where g̃ is a feasible steering vector selected from a predefined
set of directions. For example, for ULA, the steering vectors
has the following shape:

g̃ =
[
1 exp

(
−j 2πk

K
τ
Ts

)
. . . exp

(
−j 2πk

K
(N−1)τ
Ts

) ]T
(19)

where τ is the time delay between two successive micropho-
nes.

2) Avoiding Speech Distortion: The MCWF typically dis-
torts the speech signal [14]. To avoid speech distortion in
estimating X1, the output of the MVDR BF can be used
instead of the output of the MCWF. The MCWF in (14a)
can be split into a multichannel MVDR beamformer wMVDR

and a subsequent single-channel Wiener filter HWF, as shown
in [15], [16]:

X̂1 = φXgHΦ−1
y y (20)

=
φX

φX + (gHΦ−1
v g)−1︸ ︷︷ ︸

Post−filter

gHΦ−1
v

gHΦ−1
v g

y︸ ︷︷ ︸
MVDR estimate

. (21)

In our experimental study, only the MVDR output is evaluated.
Note that the MVDR BF is totally determined by Φv and g,
which are the main parameters of our study. We stress that
the REM recursion is always applied with the outcome of the
E-step, namely the MCWF.

IV. PERFORMANCE EVALUATION

According to our preliminary experimental study, joint
estimation of the entire parameter set in (8) is a cumbersome
task and may suffer from convergence problems. We have
therefore limited the experimental study to two practical cases:
1) a known noise PSD matrix and an unknown DOA, and
2) a known DOA and an unknown noise PSD matrix. Case
#1 is evaluated for both static speakers, using real room
impulse responses (RIRs) recorded at the BIU acoustic lab
with reverberation time set to 0.16 s and several SDNR
levels, and for dynamic speakers, using real recordings using
the CEVA “smart and connected” development platform. In
case #2, the algorithm was tested for dynamic noise source
and static speakers, only using the CEVA platform. These
cases, although limited, are practically important. Case #1
represents a very common case in which the noise source is
static, e.g. air-condition, and the speaker is free to move. In
this case, the noise characteristics can be easily estimated by
employing a simple VAD. Case #2 represents a case where the
speaker direction of arrival (DOA) with respect to the array is
known, e.g. a moving person wearing a headset or a bluetooth
headphones.
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TABLE I: PESQ scores (left) and LSD results (right) for the
DOA tracking.

Alg.\SNR 0 dB 10 dB 20 dB 0 dB 10 dB 20 dB

Unprocessed 0.09 0.85 2.27 14.90 9.62 5.31
Proposed MVDR 2.73 2.77 2.85 4.96 5.81 5.82
SRP based MVDR 2.56 2.86 2.77 5.79 5.99 6.44

A. DOA Estimation with a Known Noise PSD Matrix

In this section, the results of the proposed algorithm are
shown for an unknown speaker DOA and a known noise PSD
matrix (that is, only φX and g were estimated in the M-step).

First, the DOA estimation was tested for static speakers
using real recorded RIRs. A loudspeaker was positioned at
a distance of 2 m in front of a non-uniform linear array
with 8 microphones. Further details about the RIR database
can be found in [17]. Anechoic speech signals (20 signals,
each 20 sec long) evenly distributed between male and female
speakers, were convolved by the RIRs. The reverberation time
was T60 = 0.16. Directional noise with various SDNR levels
was added. Sensor noise was also added with 40 dB signal-to-
noise ratio (SNR). The sampling frequency was 16 kHz and
the frame length of the STFT was 32 ms with 8 ms between
successive time frames (that is, 75% overlap).

The speaker was positioned at 105o and the noise source at
15o. The smoothing parameters αη and αζ were set to 0.8 and
0.99, respectively. As a comparison, the DOA was estimated
using the SRP-PHAT technique [5]. The observed signals were
then filtered with an MVDR beamformer steered towards the
estimated DOA.

The performance of the proposed algorithm is evaluated in
terms of two objective measures that are commonly used in the
speech enhancement community, namely perceptual evaluation
of speech quality (PESQ) [18] and log-spectral distance (LSD).
The speech enhancement quality measures of the EM-based
MVDR estimates, the SRP-based MVDR estimates, and the
unprocessed signals are presented in Table I for several directi-
onal noise SNR levels. The best achieved scores are depicted
in boldface. The proposed algorithm usually outperforms the
competing algorithm since it is based on a more accurate DOA
estimate.

Second, the DOA estimation was tested for dynamic speaker
using the CEVA “smart and connected” development platform
(see Figure 1). The platform has 13 digital microphones in
a circular array. The signals are captured using pulse-width
modulation (PDM) in 1.5 MHz and transformed to pulse-code
modulation (PCM) in 16 kHz using a Cascaded Integrator
Comb (CIC) filter.1

The noise source was positioned at 300o w.r.t. the array.
The speaker moved in a circle from 0o to 270o, and started
to speak after eight seconds. It can be qualitatively deduced
from Figure 2 that the SRP focuses on the noise DOA while
the proposed REM tracks the speaker.

1For more details about the chip, please visit
https://www.ceva-dsp.com/product/ceva-teaklite-4/

Fig. 1: CEVA “smart and connected” development platform.
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Fig. 2: Example of DOA tracking.

B. Noise PSD Matrix Estimation with Known DOA

In this section, the results of the proposed algorithm are
shown for a known speaker DOA and an unknown noise PSD
matrix (that is, only φX and Φv were estimated in the M-
step). The case of a static noise source was not tested because
the noise PSD matrix can be easily estimated using speech
absence segments detected by VAD. The proposed noise PSD
estimation was tested using a dynamic noise source, in which
noise-only segments are useless because the noise PSD is
highly time-variable. The smoothing parameters αη and αZ

were set to 0.1 and 0.95, respectively. For comparison, the
minimum power distortionless response (MPDR) and the delay
and sum (DS) BFs were calculated using the known DOA.

To circumvent self-attenuation, the MPDR BF and ZR(m)
in (16) were updated only when low speech was assumed. To
detect low speech, simple directional VAD was used using the
steered response to signal ratio (SRSR),

SRSR ≡ |g
Hy|2

yHy
.

The MPDR BF and ZR(m) were updated only when SRSR <
η1, where η1 denoted a threshold (set to 0.8 in our implemen-
tation).
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(a) (b)

(c) (d)

Fig. 3: Example sonograms for input SNR of 10 dB. (a)
Observed signal. (b) DAS output. (c) MPDR output. (d)
Proposed EM-based MVDR.

The observed signal was recorded by a CEVA platform
installed at BIU acoustic lab. The speaker was positioned at 0o

w.r.t. the platform, and the noise source was moved in a circle
around the platform. Sonograms of the various signals are
depicted in Figure 3. The audio examples are available online:
http://www.eng.biu.ac.il/gannot/speech-
enhancement.

The DS is characterized by low speech distortion, but
exhibits limited noise reduction performance. Our version
of MPDR reduces more noise (w.r.t. the DS) but severely
degrades the speech signal. The proposed EM-based MVDR
reduces more noise since the time-varying noise PSD matrix
can be estimated even during speech segments.

V. CONCLUSIONS

In this paper, an online algorithm for speech enhancement
based on the REM algorithm was presented. The PSD of
the speech, the DOA, and the PSD matrix of the noise were
estimated by the M-step of the REM algorithm. The hidden
data was defined to be the speech, as received by the first
microphone. The parameter-based estimation of the speech
was obtained in the E-step as the MCWF. The algorithm was
experimentally tested for two cases: 1) known noise PSD ma-
trix and unknown DOA for both static and dynamic speakers
2) known DOA and unknown and varying noise PSD matrix
caused by a moving noise source. In terms of the objective
performance measures, the proposed algorithm outperforms
baseline multichannel denoising algorithms for the considered

scenarios. This conclusion can also be qualitatively deduced
by inspecting the speech sonograms and listening to a few
sound samples.
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