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Abstract—In this paper we propose a novel vertex based
sampling method for k-bandlimited signals lying on arbitrary
graphs, that has a reasonable computational complexity and
results in low reconstruction error. Our goal is to find the smallest
set of vertices that can guarantee a perfect reconstruction of
any k-bandlimited signal on any connected graph. We propose
to iteratively search for the vertices that yield the minimum
reconstruction error, by minimizing the maximum eigenvalue of
the error covariance matrix using a linear solver. We compare
the performance of our method with state-of-the-art sampling
strategies and random sampling on graphs. Experimental results
show that our method successfully computes the smallest sample
sets on arbitrary graphs without any parameter tuning. It
provides a small reconstruction error, and is robust to noise.

Index Terms—Graph signal processing, sampling, spectral
graph theory

I. INTRODUCTION

Graphs provide a natural way of representing signals lying
on arbitrary domains, and are of practical use in many ap-
plications involving social, biological, sensor networks, large-
scale data and machine learning [1], [2]. The field of graph
signal processing provides means to analyze graph structures
and connectivity information, and extends classical signal
processing tools such as translation, spectral analysis and
downsampling onto irregular domains. Sampling of graph ver-
tices requires a different characterization than the traditional
Nyquist-Shannon sampling theorem, as there is no well defined
notion of every other vertex on graphs, for example. Finding
an optimal set of samples that allows a perfect reconstruction
of graph signals is therefore still an open problem of graph
signal processing.

In this paper, we propose a novel sampling algorithm for
k-bandlimited signals in Paley-Wiener spaces on arbitrary
graphs. We use the spectrum of the graph to select the optimal
set of vertices that has the minimum number of samples
required to perfectly reconstruct the graph signal. The main
challenge in our work, as in other state-of-the-art methods,
is to find a good trade-off between computational efficiency
and high reconstruction quality. Our method computes the
optimal sampling set of smallest size with minimum recon-
struction error compared to state-of-the-art methods and is
robust also in the presence of noise. There is a beneficial trade-
off between the computational complexity of our sampling
algorithm and the accuracy of reconstruction from samples as

well. Our method results in less reconstruction error compared
to algorithms with lower computational complexity, and has
lower computational complexity than algorithms that have
comparable reconstruction errors.

The fundamentals of sampling k-bandlimited signals in
Paley-Wiener spaces on arbitrary graphs are described in
[3], [4], where a sufficient condition that guarantees perfect
reconstruction from a set of nodes is presented. This sufficient
condition, however, is not necessary, implying that sampling
set dimensions may exceed the theoretical lower bound. A
solution to this problem is proposed in [5]–[8] by showing
that a set of size k always exists to perfectly reconstruct a k-
bandlimited graph signal. The sampling set selection algorithm
presented in [7] requires a singular value decomposition (SVD)
solver, which increases system complexity. Improvements are
presented in [9] by introducing an algorithm that relies on
graph spectral proxies to approximate the frequency bound
of graph signals and predict the optimal sampling set by
maximizing this bound. The method proposed in [9] avoids
the computation of frequency decomposition; however, the
performance depends on a hyperparameter that has to be tuned
according to the problem settings. A similar approach is pre-
sented in [10] that requires higher computational complexity,
but without the necessity of parameter tuning.

A study of the uncertainty principle for graph signals was
developed in [11], [12], where sampling strategies to improve
recovery performances of aforementioned works are also pre-
sented in the latter. Other works on downsampling graph
signals rely on vertex-domain characteristics [13], [14] and
multiscale approaches [15], but are less efficient in terms of
finding the optimal set of nodes for bandlimited reconstruction.
Authors approximate the optimal sampling set in [16] again
using a vertex-based method, however the algorithm does not
scale well with large sized graphs. The randomized sampling
strategy in [17] also tackles the problem of sampling k-
bandlimited signals on graphs of very large size with rela-
tively low computational complexity, but by surpassing the
theoretical minimum number of samples. Compared to state-
of-the-art sampling strategies, our method is able to achieve a
better trade-off between computational complexity and finding
the optimal sampling set of smallest size with minimum
reconstruction error.

The outline of the paper is as follows. We introduce
the notation and theoretical background on sampling for
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k-bandlimited graph signals in Section II. In Sections III
and IV we explain our sampling strategy and algorithm,
and our reconstruction method, respectively. We validate the
performance of our approach in Section V and present our
conclusions in Section VI.

II. NOTATION AND BACKGROUND

A graph is denoted as G = (V, E) where V is the set of N
vertices and E are the edges in between. The edge connecting
vertices i and j has a weight wij that characterizes the strength
of connection between the nodes, where wij ∈ [0, 1] ⊂ R∀i, j.
The weights wij are stored in the N × N adjacency matrix
W . We denote the graph Laplacian L = D − W where D
is the diagonal degree matrix with dii =

∑
j∈V wij . The

Laplacian L is a symmetric positive semi-definite matrix,
with a set of orthonormal eigenvalues q1, ..., qN associated
with eigenvalues λ1 ≤ ... ≤ λN . Any signal f lying on
the graph can be represented as a linear combination of
the Laplacian eigenvectors, as these eigenvectors form an
orthonormal basis referred as the graph Fourier transform
(GFT) [2]. The eigenvalues λ1 ≤ ... ≤ λN carry the notion of
frequency for graph signals. A signal of bandwidth ω = λn is
therefore a linear combination of only the first n eigenvectors
of L. The space of λn-bandlimited signals is called a Paley-
Wiener space, and is denoted as PWλn(G) ⊂ RN .

Definition 2.1 (Uniqueness set): A subset of vertices S ⊂
V is a uniqueness set [3] for signals in PWω(G) if ∀f, g ∈
PWω(G), f(S) = g(S)→ f = g.

Definition 2.1 implies that for any signal f ∈ PWω(G) can
be reconstructed from its samples provided that the sample set
is a uniqueness set S for signals in PWω(G). This definition
gives way to the following lemma and theorem [5]:

Lemma 2.1: A set of nodes S is a uniqueness set for signals
in PWω(G) if and only if PWω(G) ∩ L2(Sc) = {0} with
L2(Sc) being the space of all signals ϕ that are zero in S and
nonzero on at least one node of Sc.

Theorem 2.1: A bandlimited signal f ∈ PWω(G) can be
perfectly reconstructed from its samples in S if and only if
ω < infϕ∈L2(Sc) ω(ϕ) ≜ ωc(S) where ϕ is a signal on G with
a bandwidth of ω(ϕ).

These observations then lead to the following corollary and
proposition [9]:

Corollary 2.1: A set of vertices S is a uniqueness set for
all signals f ∈ PWλn(G) if and only if q1(S), ..., qn(S) are
linearly independent, where λn is the nth smallest eigenvalue
of L and qi(S) is the reduced eigenvector that corresponds
to the ith smallest eigenvalue. The term reduced implies that
qi(S) ∈ R|S| with rows corresponding to the indices of the
sampling set S.

Proposition 2.1: For any frequency λn, the smallest unique-
ness set Sopt for signals f ∈ PWλn(G) has a size |Sopt| = n.
We will refer to such sets as minimum uniqueness set.

Corollary 2.1 gives us a guideline to compute any uniqueness
set for signals f ∈ PWλn(G) while Proposition 2.1 indi-
cates that the smallest sampling set for such signals have a
dimension of n. Equipped with all aforementioned statements,
we introduce a novel proposition that allows to construct
minimum uniqueness sets iteratively:

Proposition 2.2: For any minimum uniqueness set S of size
n for signals in PWλn(G), there is always at least one node
Si ̸∈ S such that S ∪ Si is a uniqueness set of size n+ 1 for
signals in PWλn+1

(G).

Using Corollary 2.1 and Propositions 2.1 and 2.2, we now
move forward with our algorithm to solve our sampling
problem on graphs.

III. PROPOSED SAMPLING METHOD

For a given bandlimit frequency λn we would like to find
the minimum uniqueness set Sopt for the space PWλn

(G)
that guarantees a perfect reconstruction for any signal f ∈
PWλn(G). Proposition 2.1 points out that there is a corre-
spondence between the size of the minimum uniqueness set
Sopt for signals in PWλn(G) and their bandwidth λn, i.e.
|Sopt| = n. Corollary 2.1 states that in order to find the vertices
that belong to the minimum uniqueness set Sopt, we have to
find n linearly independent rows from the matrix composed
of the first n eigenvectors of L. From Proposition 2.2, we see
that we can iteratively compute a minimum uniqueness set
S of any size by adding a sample to a previously computed
minimum uniqueness set, provided that Corollary 2.1 holds
for the new minimum uniqueness set.

Algorithm 1: Sampling algorithm
Input : Sampling set size n, first n eigenvectors of L,

i.e. Qn

Output : Minimum uniqueness set Sopt
Initialize: S = ∅

1 S ← Vi, where i is the index of any nonzero element of
first eigenvector q1

2 for m = 2 to n do
3 create matrix Qm(S)
4 compute x = null(Qm(S))
5 compute b = Qm(Sc)x
6 i← argmaxi |b(i)|
7 S ← S ∪ Sc(i)
8 end
9 Sopt ← S

We denote Qn as the N × n matrix composed of the
first n eigenvectors of L as its columns arranged according
to increasing eigenvalues. Our goal is to find n linearly
independent rows of Qn, where the independent row indices
correspond to the indices of the nodes within the minimum
uniqueness set. We start with an empty set and at each iteration
add one node to our sampling set S such that it always
remains a minimum uniqueness set. The first node to add
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to S is the one with the row index corresponding to any
nonzero element of the first eigenvector of L. At iteration
m < n, we have computed a subset of the required minimum
uniqueness set Sm that is a minimum uniqueness set for the
space PWλm(G). At iteration m + 1 we add the node Vi to
Sm such that Sm+1 = Sm ∪ Vi is a minimum uniqueness
set for signals in PWλm+1(G). We adopt the notation Qk(S)
to denote any |S| × k matrix that is composed of the first k
reduced eigenvectors of L, i.e. Qk(S) = [q1(S) ... qk(S)].
Then, we create the m × (m + 1) matrix Qm+1(Sm), which
has a rank equal to m since Qm(Sm) has full rank. The
nullspace of Qm+1(Sm) gives us the unique unit vector x
that is orthogonal to all rows of Qm+1(Sm). We then build
the |Scm| × (m + 1) matrix Qm+1(Scm) and we look for the
row that is the most linearly dependent to x. The index of
this row, i, corresponds to the absolute maximum element
index of the product vector b = Qm+1(Scm)x, and the ith

row of Qm+1(Scm) is linearly independent from all rows of
Qm+1(Sm). It must be noted that normalization of the rows
of Qm+1(Scm) prior to computation of b = Qm+1(Scm)x
improves the performance of our algorithm. We then add the
vertex Scm(i) to set Sm and obtain Sm+1. Since the matrix
Qm+1(Sm+1) is now of rank m + 1, the set Sm+1 is a
minimum uniqueness set for the space PWλm+1(G) following
Corollary 2.1 and Proposition 2.1. Also from Proposition
2.2 we know that we will always find at least one row of
Qm+1(Scm) that is not orthogonal to x. Therefore we continue
adding nodes to our sampling set until we reach |S| = n.

IV. RECONSTRUCTION

After we build the minimum uniqueness set, we try to
reconstruct the bandlimited signal f from its samples f(Sopt)
using the least squares reconstruction method described in
[18]. This method can be used for any uniqueness set S for
signals in a given PWλn(G) and has the form:

f(Sc) = Qn(Sc)(QT
n (S)Qn(S))−1(QT

n (S)f(S)) (1)

The formulation in (1) can be further simplified for our case
with S = Sopt. Since Qn(Sopt) is a square invertible matrix,
we have:

f(Scopt) = Qn(Scopt)Q−1
n (Sopt)f(Sopt) (2)

We express the reconstructed signal as f̂ = f(Sopt) ∪
f(Scopt).

V. EXPERIMENTS AND RESULTS

We now evaluate the performance of the proposed algorithm
by comparing the reconstruction errors of bandlimited signals
on different graphs, using our method and other sampling set
selection algorithms. Namely, we compare our algorithm (M1)
with the vertex sampling algorithm in [10] (M2), the vertex
sampling algorithm in [9] (M3) with parameters k = 2, 10, 50,
random sampling (M4), the probabilistic sampling approach in
[17] (M5) and the vertex sampling framework in [7] (M6). We

have generated different types of graphs each with N = 300
nodes using [19] as listed below:
G1: Erdös-Renyi random graph (unweighted), connection

probability 0.5.
G2: Erdös-Renyi random graph (unweighted), connection

probability 0.05.
G3: 6-nearest neighbor random sensor graph.
G4: 290-nearest neighbor random sensor graph.

A. Sampling random signals of a single bandwidth

We generated random bandlimited graph signals of fixed
bandwidth to sample and reconstruct, with and without addi-
tive noise, as described below:
f11: Noise free signal with n = dim PWω(G) = 140.

Nonzero GFT coefficients are randomly generated from
distribution N (1, 0.52).

f21: Signal f11 is contaminated by noise resulting in 20dB
SNR, where the noise has zero mean and GFT coefficients
of noise are randomly generated from standard uniform
distribution on the open interval (0,1). The additive noise
is normalized to have unit norm.

We then sampled these signals and tried to reconstruct the
original signal f11 from samples. We report the results in terms
of the logarithm of mean squared reconstruction error, i.e.,
log(MSE), with respect to the number of samples used for each
method. Each experiment is repeated 10 times using random
signals and the average results are depicted in Fig.1 for the
noise free and noisy cases.

We see from Fig.1 that our method and method M6 yield
the lowest reconstruction error for number of samples equal
to the signal bandwidth, and reach a stable reconstruction
error earlier than others on all types of graphs tested. The
performance of our algorithm and M6 are nearly indifferent
and are both superior to other tested methods in terms of
reconstruction error. Our method, however, has an overall
lower computational complexity compared to M6. To sample
|S| nodes from a graph of N nodes, both our method and
M6 have to find and store the first |S| eigenvectors. The
complexities of sampling set search algorithms of our method
and M6 are O(|S|4 + N |S|2) and O(N |S|4), respectively.
M6 has a greedy sampling set search algorithm that requires a
singular value decomposition in each iteration. Our method is
computationally more efficient compared to M6 for searching
for the sampling set, especially with large graphs.

The bottom row of Fig. 1 shows the reconstruction error for
the noisy signal f21 on all graphs for each tested method. We
see that our sampling algorithm is robust against noise. Similar
to the noise free case, the reconstruction error of our method
converges to a stable minimum earlier than other methods
except for M6 on G3 and G4. The performance of our method
and M6 are again comparable on all graphs, with a slightly
lower reconstruction error for M6 than our method when the
number of samples is less than or equal to the signal bandwidth
on G2 and G4.
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(a) (b) (c) (d)

Fig. 1: Reconstruction MSE in log-scale vs. number of samples on (a) G1, (b) G2, (c) G3, (d) G4 for noise free signal f11 (top
row) and noisy signal f12 (bottom row).

(a) (b) (c)

Fig. 2: Reconstruction MSE in log-scale vs. bandwidths of graph signals for noise free signal (a), noisy signal (b) and theoretical
bound for log(MSE) (c) on G4.

B. Sampling random signals of multiple bandwidths

We then generated random bandlimited graph signals of
varying bandwidths to sample and reconstruct, with and with-
out additive noise, as described below:
f12n : Noise free signal with n ∈ [25, 250]. Nonzero GFT

coefficients are randomly generated from distribution
N (1, 0.52).

f22n : Signal f12n is contaminated by noise resulting in 20dB
SNR, where the noise has zero mean and GFT coeffi-
cients of noise are randomly generated from standard
uniform distribution on the open interval (0,1). The
additive noise is normalized to have unit norm.

We then sampled these signals using numbers of samples
equal to the bandwidth of f12n for each n and tried to

reconstruct the original signal f12n using the samples. Each
experiment is again averaged over 10 runs and results on G4,
which has been arbitrarily chosen for demonstration of results,
are depicted in Fig. 2.

In Fig. 2, (a) and (b) we present the reconstruction MSE
in log-scale vs. the bandwidths of noise free and noisy graph
signals we have reconstructed in our experiments, respectively,
on G4. Our method performs well for signals of all tested
bandwidths on G4, and is again robust to noise. Moreover, our
results and also the results of M6 are more stable compared
to others. For the signals contaminated by additive noise of
unit norm, we can compute a theoretical upper bound for
MSE, that corresponds to the maximum eigenvalue of the error
covariance matrix in our method so that the reconstruction
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error is minimized. The theoretical upper bounds for MSE
for each noisy signal f22n of different bandwidths are shown
on Fig. 2(c). Our method and M6 both have relatively small
and steady theoretical upper bounds for MSE, while for other
methods this bound is fluctuating, as shown in the bottom
row of Fig. 2. In terms of computational complexity, M3 does
not require a full eigendecomposition of the graph Laplacian,
unlike M2, but the complexity increases as the value of k
is increased. Our method does not have this trade-off as it
does not require any parameter tuning. Besides the random
sampling method M4, method M5 has the best computational
efficiency since it does not require any eigendecomposition of
the graph Laplacian. Although our method needs the first n
eigenvectors of L, our reconstruction errors are significantly
smaller compared to M4 and M5 throughout the experiments.
The theoretical error bound and experimental errors of our
method are very similar to those of M6, and in most cases
our method yields to slightly more reconstruction error than
M6 for all signals of different bandwidths on all graphs. The
experimental errors between our method and M6 differ by a
maximum of 0.46dB on G4, averaged over all tested signals
with different bandwidths. However, our method is compu-
tationally more efficient than M6 in all of our experiments.
The trade-off between our method and M6 is small in terms
of the reconstruction error, but much larger in our method’s
advantage in terms of computational complexity.

VI. CONCLUSION

In this work we presented a sampling set selection method
for k-bandlimited graph signals lying on any type of connected
graph. Our method finds the optimal set of vertices that
guarantees a perfect reconstruction of the signal, does not
require parameter tuning and needs to compute and store only
the first k eigenvectors of the graph Laplacian. We are able
to find a small and stable theoretical error bound for the
reconstruction of noisy signals of different bandwidths. Exper-
imental results over different graphs and signals of different
bandwidths show that our method leads to reconstruction error
comparable to state-of-the-art methods while being robust to
noise. Our method has the advantage of having considerably
lower computational efficiency compared to methods that yield
slightly less error with much higher computational complexity.
Future work consists of lowering the overall computational
complexity of our method further by using an efficient ap-
proximation for our eigendecomposition computations.
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