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Abstract—Recently many subspace-based localization methods
were developed for estimating the directions of arrivals (DOAs)
and ranges of multiple narrowband signals in near-field. However,
most of them usually encounter “saturation behavior” in estima-
tion performance regardless of the signal-to-noise ratio (SNR)
when the number of array snapshots is not sufficiently large
enough. In this paper, we investigate the problem of localizing
multiple narrowband near-field signals impinging on a symmet-
rical uniform linear array (ULA). Firstly, by exploiting the anti-
diagonal elements of the array covariance matrix, a new linear
prediction approach with truncated singular value decomposition
(SVD) is proposed to estimate the location parameters (i.e., DOA
and range) of the incident signals. Secondly, as a measure against
the impact of finite array data, an alternating iterative scheme
is presented to improve the estimation accuracy of the location
parameters, where the “saturation behavior” encountered in most
of localization methods is solved effectively. Furthermore, the
statistical analysis of the proposed method is studied, and the
asymptotic mean-squared-error (MSE) expressions of the esti-
mation errors are derived for two location parameters. Finally,
the effectiveness and the theoretical analysis are substantiated
through numerical examples.

I. INTRODUCTION

Localization of multiple narrowband near-field signals im-
pinging on an array of sensors has various important appli-
cations in sonar, radar, seismology, speech enhancement, and
biomedical imaging (e.g., [1]– [6]), where the signal source is
close to the array and lies in the near-field (i.e., the Fresnel re-
gion), and hence the wave impinging on the array has spherical
wavefront, which is characterized by two independent location
parameters (i.e., direction of arrival (DOA) and range). As a
result, numerous conventional estimation methods with the far-
field assumption parameterized only by the DOA (e.g., [7], [8])
generally are no longer applicable in the near-field situation,
and the pair-matching of the estimated DOAs and ranges is
usually required.

In fact, by considering its second-order Taylor expansion
to approximate the spherical wavefront (i.e., Fresnel ap-
proximation), many localization methods were proposed for
the near-field narrowband signals. Some high-order statistics
(HOS) or cyclostationarity based localization methods have

This work was supported in part by the National Natural Science Foundation
of China under Grants 61671373 and 61790563, and the Programme of
Introducing Talents of Discipline to Universities under Grant B13043.

been presented for near-field signal with specifically temporal
properties [6], [9]–[11], while maximum likelihood estimation
(MLE) methods were studied in [12], [13]. But they often
require many array snapshots and have high computational
load. Additionally, the path-following method [14], the tensor-
based method [15], and the generalized ESPRIT based method
[16] were suggested. Especially, by taking advantages of some
designated characteristics of the second-order statistics (SOS)
of the observed array data, a weighted linear prediction method
(WLPM) was proposed for the near-field signals impinging on
a symmetrical uniform linear array (ULA) [17]. Unfortunately,
when the number of array snapshots is not sufficiently large
enough, most of the existing localization methods usually
encounter “saturation behavior” in estimation performance
regardless of the signal-to-noise ratio (SNR), where the es-
timated DOAs and ranges have high level of errors, which do
not decrease monotonically with the increasing SNR.

Therefore, the purpose of this paper is to investigate the
problem of localizing multiple narrowband near-field signals
impinging on a symmetrical ULA. Firstly, by exploiting the
anti-diagonal elements of the array covariance matrix, a new
linear prediction (LP) approach with truncated singular value
decomposition (SVD) is proposed to estimate the location
parameters (i.e., DOA and range) of the incident signals.
Then by introducing the oblique projection operator [19], an
alternating iterative scheme is presented as a measure against
the impact of finite array data, where the estimation accuracy
of the location parameters (i.e., DOAs and ranges) is improved,
and consequently the aforementioned “saturation behavior” is
overcome. Furthermore, the statistical analysis of the proposed
method is studied, and the asymptotic mean-squared-error
(MSE) expressions of the estimation errors are derived for
two location parameters. Finally, the effectiveness and the
theoretical analysis are verified through numerical examples.

II. DATA MODEL

We consider K narrowband noncoherent signals {sk(n)} in
near-field and imping on a ULA consisting of 2M+1 sensors
with spacing d. By letting the center of the array be the phase
reference point, the received noisy signal xm(n) at the m-th
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sensor can be expressed as

xm(n) =
K∑
k=1

sk(n)e
jτmk + wm(n) (1)

where m = −M, · · · ,M , wm(n) is the additive noise, and
τmk is the phase delay due to the time delay between the
reference sensor and the m-th sensor for the k-th signal, which
is given by [5]

τmk =
2π

λ

(√
r2k + (md)2 − 2rkmd sin θk − rk

)
(2)

where θk and rk are the DOA and range of the kth signal, and
λ is the wavelength. When the k-th signal is in the Fresnel
region (i.e., rk ∈ (0.62(D3/λ)1/2, 2D2/λ), where D is the
aperture of the array [2], τmk can be approximated by using
the second-order Taylor expansion as [17], [18]

τmk ≈ ψkm+ ϕkm
2 (3)

where ψk , −2πd sin θk/λ, ϕk , πd2 cos2 θk/(λrk), and
they are called electric angles since they map the real pa-
rameters to a simpler form. Thus, the received signals vector
x(n) , [x−M (n), x−M+1(n), · · · , xM−1(n), xM (n)]T can
be rewritten in a vector-matrix form as

x(n) =
K∑
k=1

a(θk, rk)sk(n) +w(n)

= As(n) +w(n) (4)

where ( · )T denotes transpose, s(n) and w(n) are the
vectors of incident signals and additive noises given by
s(n) , [s1(n), s2(n), · · · , sK(n)]T and w(n) , [w−M (n),
w−M+1(n), · · · , wM−1(n), wM (n)]T , while A is the s-
teering matrix of the calibrated ULA defined by A ,
[a(θ1, r1),a(θ2, r2), · · · ,a(θK , rK)], and a(θk, rk) is the ar-
ray steering vectors which can be expressed as

a(θk, rk) , [e−jMψk+jM
2ϕk , · · · , e−jψk+jϕk , 1,

ejψk+jϕk , · · · , ejMψk+jM
2ϕk ]T . (5)

In this paper, we assume that the array response matrix A
is full rank (i.e., rank{A} = K). The incident signals {sk(n)}
are zero-mean wide-sense stationary random processes, while
the additive noises {wm(n)} are uncorrelated with the inci-
dent signals and are temporally and spatially complex white
Gaussian random process with zero-mean and variance σ2.
Additionally the numbers of the incident signals K is known
and K ≤M .

III. LOCALIZATION BASED LINEAR PREDICTION
APPROACH WITH TRUNCATED SVD

Under the basic assumption and data model, the covariance
matrix R of the array output is given by

R = E{x(n)x(n)H} = ARsA
H + σ2I2M+1 (6)

By letting r̄i denote the vector that consists of the ith
anti-diagonal elements of covariance matrix R and i =
0,±1, · · · ,±2M , the pth element of r̄i is defined by

r̄i(p) , E{xp−i(n)x∗−p(n)}

=

K∑
k=1

rske
j(2p−i)(ψk−iϕk) + σ2δ(2p− i) (7)

for p = −M + i−, · · · ,M − i+, where i− , 1
2 (|i| + i),

i+ , 1
2 (|i| − i), rsk is the power of the kth signal sk(n), δ(·)

is the Kronecker delta, and (·)∗ denotes the complex conjugate.
Obviously

r̄∗i (p) = r̄i(−p+ i) (8)

By partitioning the matrix R in (6) as

R =

K 2M+1−K[
R11, R12

R21, R22

]
K

2M+1−K

(9)

we have the noise variance σ2 from R21 and R22 as [22]

σ2 =
tr{R22Π}
tr{Π}

(10)

where Π = I2M+1−K − R21R
†
21, and R†

21 = (RH
21R21)

−1

·RH
21. In the following, we will use ri(p) to stand for its

corresponding noise-free correlation, i.e., ri(p) = r̄i(p) −
σ2δ(2p− i).

A. Truncated SVD-based Linear Prediction Estimation

By dividing the vector ri into L overlapping forward vectors
with q elements, where q > K+1 and L = 2M +2− q− |i|,
the entry ri(M − b+ − l − 1) can be predicted from a linear
combination of the other entries as [23]

ri(M − i+ − l + 1) = aTi ri,M−i+−l−q+2 (11)

where ri,M−i+−l−q+2 = [ri(M−i+−l−q+2), ri(M−i+−l−
q+3), · · · , ri(M−i+−l)]T , ai = [ai,q−1, ai,q−2, · · · , ai,1]T ,
in which {ai,i} and q are the coefficients and the order of the
LP model. Specifically, from (11), we have a matrix-vector
form as

Riai = gi (12)

where the L× (q − 1) matrix Ri are given by

Ri =
[
ri,M−i+−q+1, ri,M−i+−q, · · · , ri,−M+i−

]T
(13)

and gi = [ri(M − i+), ri(M − i+ − 1), · · · , ri(−M +
i− + q − 1)]T . Clearly, ai = Ri

†gi, where (·)† stands for
pseudoinverse. However, as it was pointed out in [20] that Ri

can be replaced by a low rank approximate before performing
the pseudoinverse. For this purpose, by taking the singular
value decomposition (SVD) of matrix Ri as

Ri = U iΛiV i
H (14)

where (·)H represents Hermitian transposition, U i = [ui,1,
ui,2, · · · ,ui,q−1], V i = [vi,1, vi,2, · · · , vi,q−1], and Λi =
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diag(λi,1, λi,2, · · · , λi,q−1), then we have the minimum-norm
estimation of the LP parameter with the truncated SVD as
[20], [21], [23], [24]

ai =
K∑
k=1

ui,kv
H
i,k

λi,k
gi (15)

where the principal eigenvalues λi,1 ≥ λi,2 ≥ · · · ≥ λi,K ≥
λi,K+1 = · · · = λi,q−1 = 0. Hence, a prediction polynomial
Di(z) can be formed as [20], [21], [23], [24],

Di(z) = 1− ai,1z
−1 − · · · − ai,q−1z

−(q−1) (16)

where z = e2j(ψk−bϕk), and the electric angles ψk and ϕk
of the near-field signals can be estimated from the K signal
zeros of D(z) closest to the unit circle in the z-plane.

Apparently, under the assumption that K ≤ M , we can
form at least three groups of LP equations corresponding to
i = 0, 1 and -1 providing estimates of {ψk}, {ψk − ϕk}, and
{ψk + ϕk}. Finally by using the parameter pairing procedure
[17], we have

ψk =
1

2
{(ϕk + ψk)− (ϕk − ψk)} (17)

ϕk =
1

2
{(ϕk + ψk) + (ϕk − ψk)} (18)

Then, the estimated location parameters θ̂k and r̂k of each
near-field signal can be obtained.

IV. OBLIQUE PROJECTION BASED ALTERNATING
ITERATION FOR PERFORMANCE IMPROVEMENT

A. Saturation in Near-Field Localization

In practice, the matrix R should be estimated from finite
received array data and can be expressed as

R̂ =
1

N

N∑
n=1

x(n)xH(n)

= AR̂sA
H +AR̂sw + R̂

H

swA
H + R̂w (19)

where R̂s = (1/N)
∑N
n=1 s(n)s

H(n), R̂sw = (1/N)∑N
n=1 s(n)w

H(n), and R̂w = (1/N)
∑N
n=1 w(n)wH(n).

Obviously when the number of snapshots N is not sufficiently
large enough, the second and third terms in above will not
decrease monotonically with the increasing SNR. Furthermore,
R̂s and R̂w will not be strictly diagonal. Consequently, the
estimated elements {ˆ̃ri(p)} in the ith cross-diagonal of R̂ will
not just contain information of ψk−iϕk. Hence the “saturation
behavior” will be encountered in the localization of near-field
signals regardless of the SNR, where the estimated DOA and
range (i.e, θ̂k and r̂k) may have high elevated error floors,
which do not decrease monotonically with the increasing SNR.

B. Alternating Iteration with Oblique Projection Operator

The range space of each incident signal is nonoverlapping
and not orthogonal to that of another signal, here we consider
the utilization of oblique projection operator [19] to isolate one
incident signal from the others and to eliminate their mutual

interference between the signals. Firstly, estimate the electric
angles of the near-field signals with (16) and denote them as
{ψ̂(i)

k }Kk=1 and {ϕ̂(i)k }Kk=1. Secondly, divide the range space of
the estimated steering matrix Â as follows

R(Â) = R(âk)⊕R(Âk) (20)

where âk is the kth steering vector, ⊕ represents the direct sum
operator, and Âk denotes the array steering matrix without âk.
Thus the estimated covariance matrix R̂ can be reexpressed
as

R̂ = [ak,Ak]

[
r̂sk ρ̂T

ρ̂∗ R̂Ak

] [
aHk
AH
k

]
+ R̂w

= r̂skaka
H
k + akρ̂

TAH
k

+Akρ̂
∗aHk +AkR̂AkA

H
k + R̂w (21)

where ρ̂ = (1/N)
∑N
n=1 sk(n)sAk(n) ̸= 0(K−1)×1, sAk(n)

denotes the signal vector without signal sk(n), and R̂Ak

denotes the signal covariance corresponding to Ak. Then, to
deal with the second and third items in (21), we have K new
oblique projection operators as [19]

Ê
(i)

Ak|ak , Âk(Â
H

k Π̂
⊥
âk
Âk)

−1Â
H

k Π̂
⊥
âk

(22)

where k = 1, · · · ,K and Π̂
⊥
âk

, I2M+1 − âk(â
H
k âk)

−1âHk .
From (21) and (22), we obtain

R̂
(i)

k ,
(
I2M+1 − Ê

(i)

Ak|ak

)
ˆ̄R
(
I2M+1 − Ê

(i)

Ak|ak

)H
≈ r̂skâkâ

H
k +∆R̂w (23)

where

∆R̂w ,
(
I2M+1 − Ê

(i)

Ak|ak

)
R̂w

(
I2M+1 − Ê

(i)

Ak|ak

)H
(24)

Obviously, when SNR is sufficiently high, the matrix ∆R̂w is
reasonable small. Then we have

R̂
(i)

k ≈ r̂skâkâ
H
k (25)

Apparently, R̂
(i)

k contains exclusive ψ̂k − bϕ̂k information
of the kth signal. Finally, by estimating the electric angles
in Section III-A with (14)–(16), the electric angles estimates
could be updated as{ψ̂(i+1)

k }Kk=1 and {ϕ̂(i+1)
k }Kk=1 as i = i+1.

Repeat this procedure till the difference between two consec-
utive iterations becomes smaller than a threshold, i.e.,

K∑
k=1

∣∣∣ψ̂(i+1)
k − ψ̂

(i)
k

∣∣∣ ≤ ε (26)

where ε is an arbitrary and positive small constant (e.g., ε =
10−6), then denote ψ̂k = ψ̂

(i+1)
k and ϕ̂k = ϕ̂

(i+1)
k (i.e., the

corresponding DOAs and ranges).
Therefore based on the above discussion, when the finite

array data {x(n)}Nn=1 are available, the implementation of the
proposed method can be summarized as follows:
1) Estimate the sample array covariance matrix R̂ with (19)

and the noise variance σ̂2 with the existing method (cf.
[22]).
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2) Estimate the electric angles {ψk}Kk=1 and {ϕk}Kk=1 with
(14)–(16).

3) By calculating the estimated matrix R̂k with (22) and
(23), update the electric angles {ψ̂(i)

k }Kk=1 and {ϕ̂(i)k }Kk=1.
4) If the termination condition in (26) is not satisfied, repeat

Step 3 by setting i = i + 1; otherwise re-express the
estimates {ψ̂(i+1)

k }Kk=1 and {ϕ̂(i+1)
k }Kk=1 as {ψ̂k}Kk=1 and

{ϕ̂k}Kk=1 (i.e., the corresponding DOAs {θ̂k}Kk=1 and
ranges {r̂k}Kk=1 ).

V. STATISTICAL ANALYSIS
The asymptotic MSE expressions of the estimated DOAs

and ranges of the near-field signals are given as follows.
Theorem 1: The large-sample MSEs of the estimation error

θ̂k − θk and r̂k − rk of the near-field signals obtained by (17)
and (18) are given by

E{(∆θk)2} =
α2
1

cos2(θk)
E{(∆γ0,k)2} (27)

E{(∆rk)2} =
α2
2 cos

4(θk)

4ψ4
k

(
E{(∆γ−1,k)

2}+ E{(∆γ1,k)2}

− 2E{∆γ−1,k∆γ1,k}
)

+
α1α

2
2

ψ3
k

cos(θk) sin(2θk)
(
E{∆γ0,k∆γ−1,k}

− E{∆γ0,k∆γ1,k}
)
+

4(α1α2)
4

ψ2
E{(∆γ0,k)2}

(28)

where α1 = −λ/2πd, α2 = πd2/λ, [γ0,k, γ−1,k, γ1,k]
T ,

[ϕk, ϕk + ψk, ϕk − ψk]
T , and

E{∆γi,k∆γj,k} =
[
E{∆γi∆γj}

]
k,k

(29)

where ∆γi = [∆γi,1,∆γi,2, · · · ,∆γi,K ]T and

E{∆γi∆γTj } =
1

2
Re

{
W iE{ϵiϵHj }WH

j

−W iE{ϵiϵTj }W
T
j

}
(30)

where W i = D−1
i,0Di,2D

−1
i,1 (Ψ

H
i,1Ψi,1)

−1ΨH
i,1, where[

E{ϵiϵHj }
]
u,v

= E{ϵi,uϵ∗j,v},
[
E{ϵiϵTj }

]
u,v

= E{ϵi,uϵj,v},
and

E{ϵi,uϵ∗j,v} =
σ4

N
tr{M i,uM

H
j,v}

+
σ4

2N

1

2M + 1− 2K
tr{M i,u}tr{MH

j,v}

+
σ4

N
tr{M i,uR̄MH

j,v +M i,uM
H
j,vR̄}(31)

E{ϵi,uϵj,v} =
σ4

N
tr{M i,uM

T
j,v}

+
σ4

2N

1

2M + 1− 2K
tr{M i,u}tr{MT

j,v}

+
σ4

N
tr{M i,uR̄MT

j,v +M i,uM
T
j,vR̄}(32)

Di,0 = diag{σ2
s1e

−j(2M−|i|)γi,1 , · · · , σ2
sKe

−j(2M−|i|)γi,K}
(33)

Di,1 = diag{αi,1, αi,2, · · · , αi,K} (34)

Di,2 = diag{ej(ϕ1−iψ1), ej(ϕ2−iψ2), · · · , ej(ϕK−iψK)} (35)

Ψi,1 =


e−2jγi,1 , e−2jγi,2 , · · · , e−2jγi,K

e−4jγi,1 , e−4jγi,2 , · · · , e−4jγi,K

...
...

. . .
...

e−2Ljγi,1 , e−2Ljγi,2 , · · · , e−2Ljγi,K

(36)

where M iu , (eTu ⊗ I2M+1)Ci(āi ⊗ I2M+1), R̄ = R −
σ2I2M+1, and

Ci =


e2M+2−K̄−i1e

T
K̄+i2

· · · e2M+1−i1e
T
1+i2

e2M+1−K̄−i1e
T
K̄+1+i2

· · · e2M−i1e
T
2+i2

...
. . .

...
e1−i1e

T
2M+1+i2

· · · eK̄−i1e
T
2M+2+i2


(37)

Proof: Omitted. �

VI. SIMULATION RESULTS

The performance of proposed method is verified using a
ULA consisting of 2M +1 = 9 sensors with element spacing
d = λ/4. Two signals with equal power arrive from the
direction (−6◦, 2.5λ) and (13◦, 2.7λ). The maximum number
of iterations is set as 50 and the iteration threshold is set as
10−6 respectively. Meanwhile, the behavior of WLPM [17],
GEMM, and the Cramer-Rao lower bound (CRB) [17] are also
presented, while SNR is defined as the ratio of the signal power
to the noise variance at each sensor, and the root square errors
(RMSEs) of the the DOA and range are calculated respectively.
The results in each of the examples below are obtained from
1000 independent Monte Carlo trails.

1) Example 1: In the first experiment, the number of
snapshots is set as N = 200, and SNR varies from -10 dB to
40 dB. The RMSEs of the DOAs and ranges estimates versus
SNR are shown in Fig. 1. It shows that the performance of the
proposed method generally behaves better than both WLPM
and GEMM. Furthermore, when the number of iteration is
sufficient large, the saturation problem is solved effectively.
The performance of the ranges estimation of the proposed
method is better than WLPM and agrees with the theoretical
analysis.

2) Example 2: In the second experiment, SNR is fixed to 10
dB, and the number of snapshots varies from 10 to 1000. The
RMSEs of the DOAs and ranges estimates versus the number
of snapshots are shown in Fig. 2. It can be observed that the
performance of the proposed approach gains significantly than
both WLPM and GEMM for DOAs estimation. For range
estimates, the proposed method behaves much better than
WLPM, and it stays very close to the theoretical analysis and
CRB, which demonstrates the robustness and effectiveness of
the proposed method.

VII. CONCLUSION

In this paper, a new LP approach based on truncated SVD
was proposed for localization of multiple near-field signals
impinging on a symmetrical ULA, and an alternating iterative
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(a) DOA Estimation Performance versus SNR
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(b) Range Estimation Performance versus SNR

Fig. 1. RMSEs of the (a) DOA and (b) range estimates versus the SNR
(dash-dotted line: WLPM; “×”: GEMM; dashed line: the proposed method
w/o iteration; solid line: the proposed method; “∗”:theoretical RMSE of the
proposed method; dash-dotted line: CRB) for Example 1.
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(a) DOA Estimation Performance versus Number of Snapshots
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Fig. 2. RMSEs of the (a) DOA and (b) range estimates versus the number of
snapshots (dash-dotted line: WLPM; “×”: GEMM; dashed line: the proposed
method w/o iteration; solid line: the proposed method; “∗”:theoretical RMSE
of the proposed method; dash-dotted line: CRB) for Example 2.

scheme was also presented as a measure against the impact of
finite array data for improving the estimation accuracy of the
location parameters and overcoming the “saturation behavior”
encountered in most of localization methods of the near-field
signals. Furthermore, the asymptotic MSE expressions of the
estimation errors were derived for two location parameters.
Finally, the effectiveness and the theoretical analysis were
verified through numerical examples.
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